5d semi-holomorphic higher Chern-Simons theory and 3d integrable field theories

Alexander Schenkel

School of Mathematical Sciences, University of Nottingham, UK.

Seminar @ Shing-Tung Yau Center of Southeast University, 16 May 2025.

Based on joint work with Benoit Vicedo [CMP 2024, arXiv:2405.08083].

 $\diamond\,$ A field theory on a 2d spacetime Σ is integrable if

EOM = 0
$$\iff$$
 $d_{\Sigma}A + \frac{1}{2}[A, A] = 0$

for a Lax connection $A = A_t dt + A_x dx \in \Omega^{1,0}(\Sigma \times C, \mathfrak{g})$, constructed from the fields on Σ , depending meromorphically $\bar{\partial}A = 0$ on a Riemann surface C.

 $\diamond\,$ A field theory on a 2d spacetime Σ is integrable if

EOM = 0
$$\iff$$
 $d_{\Sigma}A + \frac{1}{2}[A, A] = 0$

for a Lax connection $A = A_t dt + A_x dx \in \Omega^{1,0}(\Sigma \times C, \mathfrak{g})$, constructed from the fields on Σ , depending meromorphically $\bar{\partial}A = 0$ on a Riemann surface C.

♦ Important consequence: The holonomy $hol_t(A)$ along Cauchy surfaces $S_t \subseteq \Sigma$ is time-independent $\partial_t hol_t(A) = 0$, so its Laurent expansion

$$\operatorname{hol}_t(A) = \sum_{n \in \mathbb{Z}} Q_n(A) z^n \quad \text{on } C$$

gives ∞ -many conserved charges, making the theory "exactly solvable".

 $\diamond\,$ A field theory on a 2d spacetime Σ is integrable if

EOM = 0
$$\iff$$
 $d_{\Sigma}A + \frac{1}{2}[A, A] = 0$

for a Lax connection $A = A_t dt + A_x dx \in \Omega^{1,0}(\Sigma \times C, \mathfrak{g})$, constructed from the fields on Σ , depending meromorphically $\bar{\partial}A = 0$ on a Riemann surface C.

♦ Important consequence: The holonomy $hol_t(A)$ along Cauchy surfaces $S_t \subseteq \Sigma$ is time-independent $\partial_t hol_t(A) = 0$, so its Laurent expansion

$$\operatorname{hol}_t(A) = \sum_{n \in \mathbb{Z}} Q_n(A) z^n \quad \text{on } C$$

gives ∞ -many conserved charges, making the theory "exactly solvable".

What is the origin of the Lax connection? How can I find it in examples?

 $\diamond\,$ A field theory on a 2d spacetime Σ is integrable if

EOM = 0
$$\iff$$
 $d_{\Sigma}A + \frac{1}{2}[A, A] = 0$

for a Lax connection $A = A_t dt + A_x dx \in \Omega^{1,0}(\Sigma \times C, \mathfrak{g})$, constructed from the fields on Σ , depending meromorphically $\bar{\partial}A = 0$ on a Riemann surface C.

♦ Important consequence: The holonomy $hol_t(A)$ along Cauchy surfaces $S_t \subseteq \Sigma$ is time-independent $\partial_t hol_t(A) = 0$, so its Laurent expansion

$$\operatorname{hol}_t(A) = \sum_{n \in \mathbb{Z}} Q_n(A) z^n \quad \text{on } C$$

gives ∞ -many conserved charges, making the theory "exactly solvable".

 \diamond What is the origin of the Lax connection? How can I find it in examples? ≤ 2018 : Mostly clever guesswork, so origin remained mysterious \bigodot

 $\diamond\,$ A field theory on a 2d spacetime Σ is integrable if

EOM = 0
$$\iff$$
 $d_{\Sigma}A + \frac{1}{2}[A, A] = 0$

for a Lax connection $A = A_t dt + A_x dx \in \Omega^{1,0}(\Sigma \times C, \mathfrak{g})$, constructed from the fields on Σ , depending meromorphically $\bar{\partial}A = 0$ on a Riemann surface C.

♦ Important consequence: The holonomy $hol_t(A)$ along Cauchy surfaces $S_t \subseteq \Sigma$ is time-independent $\partial_t hol_t(A) = 0$, so its Laurent expansion

$$\operatorname{hol}_t(A) = \sum_{n \in \mathbb{Z}} Q_n(A) z^n \quad \text{on } C$$

gives ∞ -many conserved charges, making the theory "exactly solvable".

 \diamond What is the origin of the Lax connection? How can I find it in examples? ≤ 2018 : Mostly clever guesswork, so origin remained mysterious O ≥ 2019 : Gauge-theoretic methods explain geometric origin of Lax connection O

Costello and Yamazaki's gauge-theoretic framework

 Main idea: Since the Lax connection is fundamental for integrability, one should develop a mother theory for Lax connections and then understand how to extract from it concrete models of 2d integrable field theories!

Costello and Yamazaki's gauge-theoretic framework

- Main idea: Since the Lax connection is fundamental for integrability, one should develop a mother theory for Lax connections and then understand how to extract from it concrete models of 2d integrable field theories!
- ♦ Lax connections live on a 4d manifold $X = \Sigma \times C$, with Σ a 2d spacetime and C a Riemann surface, and they take the form of gauge fields

$$A = A_t \, \mathrm{d}t + A_x \, \mathrm{d}x + A_{\bar{z}} \, \mathrm{d}\bar{z} \in \overline{\Omega}^1(X, \mathfrak{g}) \subseteq \Omega^1(X, \mathfrak{g})$$

modeled on the de Rham-Dolbeault complex $\overline{\Omega}^{\bullet}(X) = \Omega^{\bullet}(\Sigma) \hat{\otimes} \Omega^{0,\bullet}(C)$ and taking values in the Lie algebra \mathfrak{g} of some structure group G.

Costello and Yamazaki's gauge-theoretic framework

- Main idea: Since the Lax connection is fundamental for integrability, one should develop a mother theory for Lax connections and then understand how to extract from it concrete models of 2d integrable field theories!
- ♦ Lax connections live on a 4d manifold $X = \Sigma \times C$, with Σ a 2d spacetime and C a Riemann surface, and they take the form of gauge fields

$$A = A_t \, \mathrm{d}t + A_x \, \mathrm{d}x + A_{\bar{z}} \, \mathrm{d}\bar{z} \, \in \, \overline{\Omega}^1(X, \mathfrak{g}) \, \subseteq \, \Omega^1(X, \mathfrak{g})$$

modeled on the de Rham-Dolbeault complex $\overline{\Omega}^{\bullet}(X) = \Omega^{\bullet}(\Sigma) \hat{\otimes} \Omega^{0,\bullet}(C)$ and taking values in the Lie algebra \mathfrak{g} of some structure group G.

Their dynamics is governed by the 4d Chern-Simons action

$$S_{\omega}(A) \ = \ \frac{\mathrm{i}}{2\pi} \oint_{X} \omega \wedge \mathsf{CS}(A) \ = \ \frac{\mathrm{i}}{2\pi} \oint_{X} \omega \wedge \left\langle A, \frac{1}{2} \, \mathrm{d}A + \frac{1}{3!} \left[A, A\right] \right\rangle \quad ,$$

where $\omega = \omega_z \, dz \in \Omega^{1,0}(C)$ is a meromorphic 1-form $\bar{\partial}\omega = 0$ and $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{g} \to \mathbb{C}$ is a non-degenerate Ad-invariant symmetric form.

♦ Key point: The action S_{ω} is <u>not</u> invariant under gauge transformations $g: A \rightarrow {}^{g}A := g A g^{-1} - dg g^{-1}$, for all $g \in C^{\infty}(X, G)$, with the violations localized at 2d surface defects located at the poles $\hat{z} \subseteq C$ of ω

$$\boldsymbol{j}: \widehat{D} = \Sigma \times \hat{\boldsymbol{z}} \hookrightarrow X = \Sigma \times C$$

♦ Key point: The action S_{ω} is <u>not</u> invariant under gauge transformations $g: A \rightarrow {}^{g}A := g A g^{-1} - dg g^{-1}$, for all $g \in C^{\infty}(X, G)$, with the violations localized at 2d surface defects located at the poles $\hat{z} \subseteq C$ of ω

$$\boldsymbol{j} : \widehat{D} = \Sigma \times \hat{\boldsymbol{z}} \hookrightarrow X = \Sigma \times C$$

 \rightsquigarrow Impose suitable boundary conditions at \widehat{D} to obtain gauge invariance!

♦ Key point: The action S_{ω} is <u>not</u> invariant under gauge transformations $g: A \rightarrow {}^{g}A := g A g^{-1} - dg g^{-1}$, for all $g \in C^{\infty}(X, G)$, with the violations localized at 2d surface defects located at the poles $\hat{z} \subseteq C$ of ω

$$\boldsymbol{j} : \widehat{D} = \Sigma \times \hat{\boldsymbol{z}} \hookrightarrow X = \Sigma \times C$$

- \rightsquigarrow Impose suitable boundary conditions at \widehat{D} to obtain gauge invariance!
- Boundary conditions in gauge theory are additional structure (edge modes)

$$\underbrace{\boldsymbol{j}^*(\Phi) = \phi_{\mathrm{bdy}}}_{\text{equality}} \qquad \text{vs} \qquad \underbrace{\boldsymbol{j}^*(A) \stackrel{h}{\longrightarrow} \alpha_{\mathrm{bdy}}}_{\text{gauge transformation}}$$

and the boundary conditioned action $S(A,h) = S_{\omega}(A) + S_{bdy}(A,h)$ receives a boundary term for the edge mode field $h \in C^{\infty}(\widehat{D}, G) \cong C^{\infty}(\Sigma, G^{\hat{z}})$.

♦ Key point: The action S_{ω} is <u>not</u> invariant under gauge transformations $g: A \rightarrow {}^{g}A := g A g^{-1} - dg g^{-1}$, for all $g \in C^{\infty}(X, G)$, with the violations localized at 2d surface defects located at the poles $\hat{z} \subseteq C$ of ω

$$\boldsymbol{j} : \widehat{D} = \Sigma \times \hat{\boldsymbol{z}} \hookrightarrow X = \Sigma \times C$$

- \rightsquigarrow Impose suitable boundary conditions at \widehat{D} to obtain gauge invariance!
- Boundary conditions in gauge theory are additional structure (edge modes)

$$\underbrace{\boldsymbol{j}^*(\Phi) = \phi_{\mathrm{bdy}}}_{\text{equality}} \qquad \text{vs} \qquad \underbrace{\boldsymbol{j}^*(A) \xrightarrow{h} \alpha_{\mathrm{bdy}}}_{\text{gauge transformation}}$$

and the boundary conditioned action $S(A,h) = S_{\omega}(A) + S_{bdy}(A,h)$ receives a boundary term for the edge mode field $h \in C^{\infty}(\widehat{D}, G) \cong C^{\infty}(\Sigma, G^{\hat{z}})$.

 Picking a suitable solution of the bulk equation of motion gives a 2d integrable field theory for h on Σ, together with its Lax connection A = A(h).

♦ Key point: The action S_{ω} is <u>not</u> invariant under gauge transformations $g: A \rightarrow {}^{g}A := g A g^{-1} - dg g^{-1}$, for all $g \in C^{\infty}(X, G)$, with the violations localized at 2d surface defects located at the poles $\hat{z} \subseteq C$ of ω

$$\boldsymbol{j} : \widehat{D} = \Sigma \times \hat{\boldsymbol{z}} \hookrightarrow X = \Sigma \times C$$

- \rightsquigarrow Impose suitable boundary conditions at \widehat{D} to obtain gauge invariance!
- Boundary conditions in gauge theory are additional structure (edge modes)

$$\underbrace{\boldsymbol{j}^*(\Phi) = \phi_{\mathrm{bdy}}}_{\text{equality}} \qquad \text{vs} \qquad \underbrace{\boldsymbol{j}^*(A) \xrightarrow{h} \alpha_{\mathrm{bdy}}}_{\text{gauge transformation}}$$

and the boundary conditioned action $S(A,h) = S_{\omega}(A) + S_{bdy}(A,h)$ receives a boundary term for the edge mode field $h \in C^{\infty}(\widehat{D}, G) \cong C^{\infty}(\Sigma, G^{\hat{z}})$.

- Picking a suitable solution of the bulk equation of motion gives a 2d integrable field theory for h on Σ, together with its Lax connection A = A(h).
- The details of this construction are somewhat technical and can be found in [Benini, AS, Vicedo: CMP 2022, arXiv:2008.01829].

Alexander Schenkel

5d 2-Chern-Simons and 3d IFT

♦ Long-standing problem: What are good foundations for, and examples of, integrable field theories on a (d + 1)-dimensional spacetime M, for d > 1?

- ♦ Long-standing problem: What are good foundations for, and examples of, integrable field theories on a (d + 1)-dimensional spacetime M, for d > 1?
- ♦ Taking the Lax formalism seriously, one should be looking for *d*-dimensional holonomies $hol_t(A)$ along Cauchy surfaces $S_t \subseteq M$ which are
 - 1. time-independent $\partial_t \operatorname{hol}_t(\mathcal{A}) = 0$
 - 2. meromorphic on some Riemann surface C (maybe also higher-dimensional?)

such that its Laurent expansion gives ∞ -many conserved charges.

- ♦ Long-standing problem: What are good foundations for, and examples of, integrable field theories on a (d + 1)-dimensional spacetime M, for d > 1?
- ♦ Taking the Lax formalism seriously, one should be looking for *d*-dimensional holonomies $hol_t(A)$ along Cauchy surfaces $S_t \subseteq M$ which are
 - 1. time-independent $\partial_t \operatorname{hol}_t(\mathcal{A}) = 0$
 - 2. meromorphic on some Riemann surface C (maybe also higher-dimensional?) such that its Laurent expansion gives ∞ -many conserved charges.
- ♦ This can be realized in terms of connections \mathcal{A} on higher principal bundles $\mathcal{G} \curvearrowright \mathcal{P} \to M \times C$ for a Lie *d*-group \mathcal{G} . (Higher gauge theory!)

- ♦ Long-standing problem: What are good foundations for, and examples of, integrable field theories on a (d + 1)-dimensional spacetime M, for d > 1?
- ♦ Taking the Lax formalism seriously, one should be looking for *d*-dimensional holonomies $hol_t(A)$ along Cauchy surfaces $S_t \subseteq M$ which are
 - 1. time-independent $\partial_t \operatorname{hol}_t(\mathcal{A}) = 0$

2. meromorphic on some Riemann surface C (maybe also higher-dimensional?) such that its Laurent expansion gives ∞ -many conserved charges.

♦ This can be realized in terms of connections \mathcal{A} on higher principal bundles $\mathcal{G} \curvearrowright \mathcal{P} \to M \times C$ for a Lie *d*-group \mathcal{G} . (Higher gauge theory!)

◊ Aim of the rest of the talk:

Focusing on the simplest non-trivial case, I will present a semi-holomorphic 2-Chern-Simons theory on 5d manifolds $X = M \times C$ which generates 3d integrable field theories on M and their higher Lax connections.

Lie 2-groups and Lie 2-algebras

♦ Strict Lie 2-groups $\mathcal{G} \simeq$ crossed modules of Lie groups (G, H, t, α) where

- G and H are ordinary Lie groups,
- $t: H \to G$ is a Lie group homomorphism, and
- $\alpha: G \to \operatorname{Aut}(H)$ is a *G*-action on *H*,

such that, for all $g \in G$ and $h, h' \in H$,

$$t(\alpha(g,h)) = g t(h) g^{-1}$$
, $\alpha(t(h),h') = h h' h^{-1}$

Lie 2-groups and Lie 2-algebras

♦ Strict Lie 2-groups $\mathcal{G} \simeq$ crossed modules of Lie groups (G, H, t, α) where

- G and H are ordinary Lie groups,
- $t: H \to G$ is a Lie group homomorphism, and
- $\alpha: G \to \operatorname{Aut}(H)$ is a *G*-action on *H*,

such that, for all $g \in G$ and $h, h' \in H$,

$$t(\alpha(g,h)) = g t(h) g^{-1} , \alpha(t(h),h') = h h' h^{-1}$$

 $\diamond\,$ The associated Lie 2-algebra is the crossed module of Lie algebras $(\mathfrak{g},\mathfrak{h},t_*,\alpha_*)$ where

- \mathfrak{g} and \mathfrak{h} are the Lie algebras of G and H, and
- $t_* = dt|_{1_H} : \mathfrak{h} \to \mathfrak{g}$ and $\alpha_* = d\alpha|_{1_G} : \mathfrak{g} \to \operatorname{Der}(\mathfrak{h})$ via differentiation.

The structure identities differentiate to, for all $x \in \mathfrak{g}$ and $y, y' \in \mathfrak{h}$,

$$t_*(\alpha_*(x,y)) = [x,t_*(y)] , \quad \alpha_*(t_*(y),y') = [y,y'] .$$

Lie 2-groups and Lie 2-algebras

 \diamond Strict Lie 2-groups $\mathcal{G} \simeq$ crossed modules of Lie groups (G, H, t, α) where

- G and H are ordinary Lie groups,
- $t: H \to G$ is a Lie group homomorphism, and
- $\alpha: G \to \operatorname{Aut}(H)$ is a *G*-action on *H*,

such that, for all $g \in G$ and $h, h' \in H$,

$$t(\alpha(g,h)) = g t(h) g^{-1} , \alpha(t(h),h') = h h' h^{-1}$$

 $\diamond\,$ The associated Lie 2-algebra is the crossed module of Lie algebras $(\mathfrak{g},\mathfrak{h},t_*,\alpha_*)$ where

- \mathfrak{g} and \mathfrak{h} are the Lie algebras of G and H, and
- $t_* = dt|_{1_H} : \mathfrak{h} \to \mathfrak{g}$ and $\alpha_* = d\alpha|_{1_G} : \mathfrak{g} \to \operatorname{Der}(\mathfrak{h})$ via differentiation.

The structure identities differentiate to, for all $x \in \mathfrak{g}$ and $y, y' \in \mathfrak{h}$,

$$t_*(\alpha_*(x,y)) = [x,t_*(y)]$$
, $\alpha_*(t_*(y),y') = [y,y']$.

All of this is quite explicit, so with some practice one can do computations!

Alexander Schenkel

Connections on trivial principal 2-bundles

 \diamond Fix a manifold X and strict Lie 2-group (G, H, t, α) . A connection is a pair

 $\mathcal{A} = (A, B) \in \Omega^1(X, \mathfrak{g}) \times \Omega^2(X, \mathfrak{h})$.

Connections on trivial principal 2-bundles

 \diamond Fix a manifold X and strict Lie 2-group (G, H, t, α) . A connection is a pair

$$\mathcal{A} = (A,B) \in \Omega^1(X,\mathfrak{g}) \times \Omega^2(X,\mathfrak{h})$$

♦ A gauge transformation is a pair $(g, \gamma) \in C^{\infty}(X, G) \times \Omega^{1}(X, \mathfrak{h})$ and it transforms connections $(g, \gamma) : (A, B) \longrightarrow {}^{(g, \gamma)}(A, B)$ according to

$${}^{(g,\gamma)}A = g A g^{-1} - \mathrm{d}g g^{-1} - t_*(\gamma) ,$$

$${}^{(g,\gamma)}B = \alpha_*(g,B) - F(\gamma) - \alpha_* \left({}^{(g,\gamma)}A, \gamma \right) ,$$

where $F(\gamma) := d\gamma + \frac{1}{2} [\gamma, \gamma]$.

Connections on trivial principal 2-bundles

 \diamond Fix a manifold X and strict Lie 2-group (G, H, t, α) . A connection is a pair

$$\mathcal{A} = (A,B) \in \Omega^1(X,\mathfrak{g}) \times \Omega^2(X,\mathfrak{h})$$

♦ A gauge transformation is a pair $(g, \gamma) \in C^{\infty}(X, G) \times \Omega^{1}(X, \mathfrak{h})$ and it transforms connections $(g, \gamma) : (A, B) \longrightarrow {}^{(g, \gamma)}(A, B)$ according to

$${}^{(g,\gamma)}A = g A g^{-1} - dg g^{-1} - t_*(\gamma) ,$$

$${}^{(g,\gamma)}B = \alpha_*(g,B) - F(\gamma) - \alpha_* ({}^{(g,\gamma)}A, \gamma) ,$$

where
$$F(\gamma) := d\gamma + \frac{1}{2} [\gamma, \gamma]$$
.

Rem: A useful perspective on connections is as 1-cochains in the dg-Lie algebra

$$L := \operatorname{Tot} \begin{pmatrix} \Omega^{0(0,0)} & \stackrel{d}{\longrightarrow} \Omega^{1}(X,\mathfrak{g}) \stackrel{d}{\longrightarrow} \cdots \stackrel{d}{\longrightarrow} \Omega^{n}(X,\mathfrak{g}) \\ t_{*} \uparrow & t_{*} \uparrow & t_{*} \uparrow \\ \Omega^{(-1,0)} & \stackrel{d}{\longrightarrow} \Omega^{1}(X,\mathfrak{h}) \stackrel{d}{\longrightarrow} \cdots \stackrel{d}{\longrightarrow} \Omega^{n}(X,\mathfrak{h}) \end{pmatrix}$$

2-Chern-Simons 4-form and action

♦ There exist general techniques (buzzword: Maurer-Cartan theory) to extract from a dg-Lie algebra $(L, d_L, [\cdot, \cdot]_L)$ a Lagrangian and action.

$2\text{-}\mathsf{Chern}\text{-}\mathsf{Simons}$ $4\text{-}\mathsf{form}$ and action

- ♦ There exist general techniques (buzzword: Maurer-Cartan theory) to extract from a dg-Lie algebra $(L, d_L, [\cdot, \cdot]_L)$ a Lagrangian and action.
- ♦ These require the choice of a cyclic structure on *L*, which in our example amounts to a non-degenerate pairing $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{h} \to \mathbb{C}$ satisfying

$$\langle g x g^{-1}, \alpha_*(g, y) \rangle = \langle x, y \rangle , \quad \langle t_*(y), y' \rangle = \langle t_*(y'), y \rangle$$

$2\text{-}\mathsf{Chern}\text{-}\mathsf{Simons}$ $4\text{-}\mathsf{form}$ and action

- ♦ There exist general techniques (buzzword: Maurer-Cartan theory) to extract from a dg-Lie algebra $(L, d_L, [\cdot, \cdot]_L)$ a Lagrangian and action.
- ♦ These require the choice of a cyclic structure on *L*, which in our example amounts to a non-degenerate pairing $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{h} \to \mathbb{C}$ satisfying

$$\left\langle g \, x \, g^{-1}, lpha_*(g,y) \right
angle \, = \, \left\langle x,y
ight
angle \, \, , \quad \left\langle t_*(y),y'
ight
angle \, = \, \left\langle t_*(y'),y
ight
angle \, \, .$$

Def: The 2-Chern-Simons 4-form associated to a connection $\mathcal{A} = (A, B)$ is

$$CS(\mathcal{A}) := \left\langle \mathcal{A}, \frac{1}{2} d_L \mathcal{A} + \frac{1}{3!} [\mathcal{A}, \mathcal{A}]_L \right\rangle_L$$
$$= \left\langle F(\mathcal{A}) - \frac{1}{2} t_*(B), B \right\rangle - \frac{1}{2} d\langle \mathcal{A}, B \rangle \in \Omega^4(X)$$

$2\text{-}\mathsf{Chern}\text{-}\mathsf{Simons}$ $4\text{-}\mathsf{form}$ and action

- ♦ There exist general techniques (buzzword: Maurer-Cartan theory) to extract from a dg-Lie algebra $(L, d_L, [\cdot, \cdot]_L)$ a Lagrangian and action.
- ♦ These require the choice of a cyclic structure on *L*, which in our example amounts to a non-degenerate pairing $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{h} \to \mathbb{C}$ satisfying

$$\left\langle g \, x \, g^{-1}, lpha_*(g, y) \right
angle \, = \, \left\langle x, y
ight
angle \, \, , \quad \left\langle t_*(y), y'
ight
angle \, = \, \left\langle t_*(y'), y
ight
angle \, \, .$$

Def: The 2-Chern-Simons 4-form associated to a connection $\mathcal{A} = (A, B)$ is

$$CS(\mathcal{A}) := \left\langle \mathcal{A}, \frac{1}{2} d_L \mathcal{A} + \frac{1}{3!} [\mathcal{A}, \mathcal{A}]_L \right\rangle_L$$
$$= \left\langle F(\mathcal{A}) - \frac{1}{2} t_*(\mathcal{B}), \mathcal{B} \right\rangle - \frac{1}{2} d\langle \mathcal{A}, \mathcal{B} \rangle \in \Omega^4(X)$$

♦ In the 5d semi-holomorphic case $X = M \times C$, choosing a meromorphic 1-form $\omega = \omega_z \, dz \in \Omega^{1,0}(C)$ allows us to define the action

$$S_{\omega}(\mathcal{A}) = rac{\mathrm{i}}{2\pi} \int_{X} \omega \wedge \mathsf{CS}(\mathcal{A}) \quad ,$$

generalizing Costello-Yamazaki from 4d to 5d.

Alexander Schenkel

Behavior near the poles $\hat{\boldsymbol{z}} \subseteq C$ of ω

♦ At the 3d volume defects $j : \hat{D} = M \times \hat{z} \longrightarrow X = M \times C$ there are interesting phenomena captured by the holomorphic jet expansions

$$oldsymbol{j}^*(\cdot) = igg(\sum_{p=0}^{n_x-1}rac{1}{p!}\iota_x^*\partial_z^p(\cdot)\otimes\epsilon_x^pigg)_{x\in ext{poles}} \quad (n_x= ext{order of pole }x)$$

Behavior near the poles $\hat{\boldsymbol{z}} \subseteq C$ of ω

♦ At the 3d volume defects $j : \hat{D} = M \times \hat{z} \longrightarrow X = M \times C$ there are interesting phenomena captured by the holomorphic jet expansions

$$oldsymbol{j}^*(\cdot) \ = \ igg(\sum_{p=0}^{n_x-1} rac{1}{p!} \iota_x^* \partial_z^p(\cdot) \otimes \epsilon_x^pigg)_{x\in ext{poles}} \quad (n_x = ext{order of pole } x)$$

The defect data live in the jet Lie groups

$$G^{\hat{z}} = \prod_{x \in \text{poles}} J^{n_x - 1}G$$
, $H^{\hat{z}} = \prod_{x \in \text{poles}} J^{n_x - 1}H$

and their Lie algebras $\mathfrak{g}^{\hat{\boldsymbol{z}}}$ and $\mathfrak{h}^{\hat{\boldsymbol{z}}}.$

Behavior near the poles $\hat{\boldsymbol{z}} \subseteq C$ of ω

♦ At the 3d volume defects $j : \hat{D} = M \times \hat{z} \longrightarrow X = M \times C$ there are interesting phenomena captured by the holomorphic jet expansions

$$oldsymbol{j}^*(\cdot) = igg(\sum_{p=0}^{n_x-1} rac{1}{p!} \iota_x^* \partial_z^p(\cdot) \otimes \epsilon_x^pigg)_{x\in ext{poles}} \quad (n_x = ext{order of pole } x)$$

The defect data live in the jet Lie groups

$$G^{\hat{z}} = \prod_{x \in \text{poles}} J^{n_x - 1}G$$
, $H^{\hat{z}} = \prod_{x \in \text{poles}} J^{n_x - 1}H$

and their Lie algebras $\mathfrak{g}^{\hat{\boldsymbol{z}}}$ and $\mathfrak{h}^{\hat{\boldsymbol{z}}}.$

Prop: Under gauge transformations $(g, \gamma) \in C^{\infty}(X, G) \times \Omega^{1}(X, \mathfrak{h})$:

$$S_{\omega}(^{(g,\gamma)}(A,B)) = S_{\omega}(A,B) + \frac{1}{2} \int_{M} \left(\left\langle \left\langle \boldsymbol{j}^{*}(g) \, \boldsymbol{j}^{*}(A) \, \boldsymbol{j}^{*}(g)^{-1}, F_{M}(\boldsymbol{j}^{*}(\gamma)) \right\rangle \right\rangle_{\omega} \right. \\ \left. + \left\langle \left\langle \boldsymbol{j}^{*}(\boldsymbol{t}_{*}(\gamma)), \mathrm{d}_{M} \boldsymbol{j}^{*}(\gamma) + \frac{1}{3} \left[\boldsymbol{j}^{*}(\gamma), \boldsymbol{j}^{*}(\gamma) \right] \right\rangle \right\rangle_{\omega} \\ \left. - \left\langle \left\langle \mathrm{d}_{M} \boldsymbol{j}^{*}(g) \, \boldsymbol{j}^{*}(g)^{-1} + \boldsymbol{j}^{*}(\boldsymbol{t}_{*}(\gamma)), \boldsymbol{j}^{*}(\alpha_{*}(g,B)) + F_{M}(\boldsymbol{j}^{*}(\gamma)) \right\rangle \right\rangle_{\omega} \right)$$

Alexander Schenkel

Boundary conditions, edge modes and boundary action

 \diamond From this specific form of gauge symmetry violation of S_{ω} , one observes that a suitable class of boundary conditions is given by isotropic Lie 2-subgroups

$$(G^\diamond, H^\diamond, t^{\hat{\boldsymbol{z}}}, \alpha^{\hat{\boldsymbol{z}}}) \subseteq (G^{\hat{\boldsymbol{z}}}, H^{\hat{\boldsymbol{z}}}, t^{\hat{\boldsymbol{z}}}, \alpha^{\hat{\boldsymbol{z}}}) \quad \text{such that} \quad \langle\!\langle \cdot, \cdot \rangle\!\rangle_{\omega}\big|_{\mathfrak{g}^\diamond \otimes \mathfrak{h}^\diamond} = 0$$

Boundary conditions, edge modes and boundary action

♦ From this specific form of gauge symmetry violation of S_{ω} , one observes that a suitable class of boundary conditions is given by isotropic Lie 2-subgroups

$$(G^\diamond, H^\diamond, t^{\hat{\boldsymbol{z}}}, \alpha^{\hat{\boldsymbol{z}}}) \subseteq (G^{\hat{\boldsymbol{z}}}, H^{\hat{\boldsymbol{z}}}, t^{\hat{\boldsymbol{z}}}, \alpha^{\hat{\boldsymbol{z}}}) \quad \text{such that} \quad \langle\!\langle \cdot, \cdot \rangle\!\rangle_{\omega}\big|_{\mathfrak{g}^\diamond \otimes \mathfrak{h}^\diamond} = 0$$

♦ This yields edge modes $(k, \kappa) \in C^{\infty}(M, G^{\hat{z}}) \times \Omega^{1}(M, \mathfrak{h}^{\hat{z}})$ implementing

 ${}^{(k,\kappa)}\boldsymbol{j}^*(A,B) \in \Omega^1(M,\mathfrak{g}^\diamond) \times \Omega^2(M,\mathfrak{h}^\diamond)$.

Boundary conditions, edge modes and boundary action

♦ From this specific form of gauge symmetry violation of S_{ω} , one observes that a suitable class of boundary conditions is given by isotropic Lie 2-subgroups

$$(G^\diamond, H^\diamond, t^{\hat{\boldsymbol{z}}}, \alpha^{\hat{\boldsymbol{z}}}) \subseteq (G^{\hat{\boldsymbol{z}}}, H^{\hat{\boldsymbol{z}}}, t^{\hat{\boldsymbol{z}}}, \alpha^{\hat{\boldsymbol{z}}}) \quad \text{such that} \quad \langle\!\langle \cdot, \cdot \rangle\!\rangle_{\omega} \big|_{\mathfrak{g}^\diamond \otimes \mathfrak{h}^\diamond} = 0$$

 \diamond This yields edge modes $(k,\kappa) \in C^{\infty}(M, G^{\hat{z}}) \times \Omega^{1}(M, \mathfrak{h}^{\hat{z}})$ implementing

$${}^{(k,\kappa)}\boldsymbol{j}^*(A,B) \in \Omega^1(M,\mathfrak{g}^\diamond) \times \Omega^2(M,\mathfrak{h}^\diamond)$$

 $\diamond~$ The induced action on bulk fields (A,B) and edge modes (k,κ) is

$$S((A,B),(k,\kappa)) = \frac{\mathrm{i}}{2\pi} \int_X \omega \wedge \langle F(A) - \frac{1}{2} t_*(B), B \rangle + \frac{1}{2} \int_M \left(\langle \langle (^{(k,\kappa)} \boldsymbol{j}^*(A), \alpha_*^{\hat{\boldsymbol{z}}}(^{(k,\kappa)} \boldsymbol{j}^*(A), \kappa) + 2F_M(\kappa) \rangle \rangle_\omega \right) + \langle \langle t_*^{\hat{\boldsymbol{z}}}(\kappa), \mathrm{d}_M \kappa + \frac{1}{3} [\kappa, \kappa] \rangle \rangle_\omega \right) .$$

- 1. Fix input data of the 5d theory, i.e.
 - meromorphic 1-form $\omega \in \Omega^{1,0}(C)$,
 - Lie 2-group (G, H, t, α) with cyclic structure $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{h} \to \mathbb{C}$, and
 - isotropic Lie 2-subgroup $(G^{\diamond}, H^{\diamond}, t^{\hat{z}}, \alpha^{\hat{z}}) \subseteq (G^{\hat{z}}, H^{\hat{z}}, t^{\hat{z}}, \alpha^{\hat{z}}).$

- 1. Fix input data of the 5d theory, i.e.
 - meromorphic 1-form $\omega \in \Omega^{1,0}(C)$,
 - Lie 2-group (G, H, t, α) with cyclic structure $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{h} \to \mathbb{C}$, and
 - isotropic Lie 2-subgroup $(G^{\diamond}, H^{\diamond}, t^{\hat{z}}, \alpha^{\hat{z}}) \subseteq (G^{\hat{z}}, H^{\hat{z}}, t^{\hat{z}}, \alpha^{\hat{z}}).$
- 2. Work in gauge $A_{\bar{z}} = 0$ and $B_{i\bar{z}} = 0$, so that the bulk equations of motion become $\omega \wedge \bar{\partial}A = 0$ and $\omega \wedge \bar{\partial}B = 0$. Choose admissible bulk solution (A, B) and solve boundary conditions for higher Lax connection:

$${}^{(k,\kappa)}\boldsymbol{j}^*(A,B)\,\in\,\Omega^1(M,\mathfrak{g}^\diamond)\times\Omega^2(M,\mathfrak{h}^\diamond)\quad\overset{\text{solve}}{\leadsto}\quad (A,B)\,=\,\left(A(k,\kappa),B(k,\kappa)\right)$$

- 1. Fix input data of the 5d theory, i.e.
 - meromorphic 1-form $\omega \in \Omega^{1,0}(C)$,
 - Lie 2-group (G, H, t, α) with cyclic structure $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{h} \to \mathbb{C}$, and
 - isotropic Lie 2-subgroup $(G^\diamond, H^\diamond, t^{\hat{z}}, \alpha^{\hat{z}}) \subseteq (G^{\hat{z}}, H^{\hat{z}}, t^{\hat{z}}, \alpha^{\hat{z}}).$
- 2. Work in gauge $A_{\bar{z}} = 0$ and $B_{i\bar{z}} = 0$, so that the bulk equations of motion become $\omega \wedge \bar{\partial}A = 0$ and $\omega \wedge \bar{\partial}B = 0$. Choose admissible bulk solution (A, B) and solve boundary conditions for higher Lax connection:

$${}^{(k,\kappa)}\boldsymbol{j}^*(A,B)\,\in\,\Omega^1(M,\mathfrak{g}^\diamond)\times\Omega^2(M,\mathfrak{h}^\diamond)\quad\overset{\text{solve}}{\leadsto}\quad(A,B)\,=\,\left(A(k,\kappa),B(k,\kappa)\right)$$

3. Inserting back into action yields 3d integrable field theory

$$S_{3d}(k,\kappa) = \frac{1}{2} \int_M \left(\left\langle \left\langle {^{(k,\kappa)} \boldsymbol{j}^*(A), \alpha_*^{\hat{\boldsymbol{z}}} \left({^{(k,\kappa)} \boldsymbol{j}^*(A), \kappa} \right) + 2F_M(\kappa) \right\rangle \right\rangle_\omega \right. \\ \left. + \left\langle \left\langle t_*^{\hat{\boldsymbol{z}}}(\kappa), d_M \kappa + \frac{1}{3}[\kappa,\kappa] \right\rangle \right\rangle_\omega \right) \quad .$$

- 1. Fix input data of the 5d theory, i.e.
 - meromorphic 1-form $\omega \in \Omega^{1,0}(C)$,
 - Lie 2-group (G, H, t, α) with cyclic structure $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes \mathfrak{h} \to \mathbb{C}$, and
 - isotropic Lie 2-subgroup $(G^{\diamond}, H^{\diamond}, t^{\hat{z}}, \alpha^{\hat{z}}) \subseteq (G^{\hat{z}}, H^{\hat{z}}, t^{\hat{z}}, \alpha^{\hat{z}}).$
- 2. Work in gauge $A_{\bar{z}} = 0$ and $B_{i\bar{z}} = 0$, so that the bulk equations of motion become $\omega \wedge \bar{\partial}A = 0$ and $\omega \wedge \bar{\partial}B = 0$. Choose admissible bulk solution (A, B) and solve boundary conditions for higher Lax connection:

$${}^{(k,\kappa)}\boldsymbol{j}^*(A,B)\,\in\,\Omega^1(M,\mathfrak{g}^\diamond)\times\Omega^2(M,\mathfrak{h}^\diamond)\quad\overset{\text{solve}}{\leadsto}\quad(A,B)\,=\,\left(A(k,\kappa),B(k,\kappa)\right)$$

3. Inserting back into action yields 3d integrable field theory

$$S_{3d}(k,\kappa) = \frac{1}{2} \int_M \left(\left\langle \left\langle {^{(k,\kappa)} \boldsymbol{j}^*(A), \alpha_*^{\hat{\boldsymbol{z}}} \left({^{(k,\kappa)} \boldsymbol{j}^*(A), \kappa} \right) + 2F_M(\kappa) \right\rangle \right\rangle_\omega \right. \\ \left. + \left\langle \left\langle t_*^{\hat{\boldsymbol{z}}}(\kappa), d_M \kappa + \frac{1}{3}[\kappa,\kappa] \right\rangle \right\rangle_\omega \right) \quad .$$

By construction, the EOM from S_{3d} is equivalent to flatness of (A, B)!

Alexander Schenkel

Example 1: (3d Chern-Simons theory)

• Choose Lie 2-group $(G, G, \mathrm{id}, \mathrm{Ad})$ and

$$\omega = \frac{1-z}{z} dz , \quad G^{\diamond} = G \times \left(\mathbf{1}_G \ltimes \mathfrak{g} \right) , \quad H^{\diamond} = \mathbf{1}_G \times \left(\mathbf{1}_G \ltimes \mathfrak{g} \right) .$$

- **Example 1:** (3d Chern-Simons theory)
 - Choose Lie 2-group $(G, G, \mathrm{id}, \mathrm{Ad})$ and

$$\omega = \frac{1-z}{z} \, \mathrm{d}z \quad , \quad G^{\diamond} = G \times \left(\mathbf{1}_G \ltimes \mathfrak{g} \right) \quad , \quad H^{\diamond} = \mathbf{1}_G \times \left(\mathbf{1}_G \ltimes \mathfrak{g} \right) \quad .$$

• Gauge fixing the edge mode $(k,\kappa) = ((1_G,(1_G,0)),(0,(\boldsymbol{\alpha},0)))$ gives

$$S_{3d}(\alpha) = -\int_M \left\langle \alpha, \frac{1}{2} d_M \alpha + \frac{1}{3!} [\alpha, \alpha] \right\rangle \quad \text{with} \quad (A, B) = \left(\alpha, \frac{z}{z-1} F_M(\alpha) \right)$$

- **Example 1:** (3d Chern-Simons theory)
 - Choose Lie 2-group $(G,G,\mathrm{id},\mathrm{Ad})$ and

$$\omega = \frac{1-z}{z} \, \mathrm{d}z \quad , \quad G^{\diamond} = G \times \left(\mathbf{1}_G \ltimes \mathfrak{g} \right) \quad , \quad H^{\diamond} = \mathbf{1}_G \times \left(\mathbf{1}_G \ltimes \mathfrak{g} \right) \quad .$$

• Gauge fixing the edge mode $(k,\kappa) = ((1_G,(1_G,0)),(0,(\boldsymbol{\alpha},0)))$ gives

$$S_{3d}(\alpha) = -\int_M \left\langle \alpha, \frac{1}{2} \operatorname{d}_M \alpha + \frac{1}{3!} \left[\alpha, \alpha \right] \right\rangle \quad \text{with} \quad (A, B) = \left(\alpha, \frac{z}{z-1} F_M(\alpha) \right)$$

- Example 2: (3d Ward equation)
 - Choose Lie 2-group $T[1]G = (G, \mathfrak{g}, 1_G, \operatorname{Ad})$ and

$$\omega \ = \ \frac{z \prod_{i=1}^3 (z-a_i)}{(z-r)^2 \, (z-s)^2} \, \mathrm{d}z \quad , \quad \begin{cases} G^\diamond \ = \ (\mathbf{1}_G \ltimes \mathfrak{g}) \times (G \ltimes \mathfrak{g}) \times (\mathbf{1}_G \ltimes \mathfrak{g}) \\ H^\diamond \ = \ (\mathbf{0} \times \mathfrak{g}) \times (\mathbf{0} \times \mathbf{0}) \times (\mathbf{0} \times \mathfrak{g}) \end{cases} \quad ,$$

- **Example 1:** (3d Chern-Simons theory)
 - Choose Lie 2-group $(G,G,\mathrm{id},\mathrm{Ad})$ and

$$\omega = \frac{1-z}{z} \, \mathrm{d}z \quad , \quad G^{\diamond} = G \times \left(\mathbf{1}_G \ltimes \mathfrak{g} \right) \quad , \quad H^{\diamond} = \mathbf{1}_G \times \left(\mathbf{1}_G \ltimes \mathfrak{g} \right) \quad .$$

• Gauge fixing the edge mode $(k,\kappa)=\big((1_G,(1_G,0)),(0,(\pmb{\alpha},0))\big)$ gives

$$S_{3d}(\alpha) = -\int_M \left\langle \alpha, \frac{1}{2} d_M \alpha + \frac{1}{3!} [\alpha, \alpha] \right\rangle \quad \text{with} \quad (A, B) = \left(\alpha, \frac{z}{z-1} F_M(\alpha) \right)$$

- Example 2: (3d Ward equation)
 - Choose Lie 2-group $T[1]G = (G, \mathfrak{g}, 1_G, \operatorname{Ad})$ and

$$\omega = \frac{z \prod_{i=1}^{3} (z - a_i)}{(z - r)^2 (z - s)^2} dz , \quad \begin{cases} G^{\diamond} = (1_G \ltimes \mathfrak{g}) \times (G \ltimes \mathfrak{g}) \times (1_G \ltimes \mathfrak{g}) \\ H^{\diamond} = (0 \times \mathfrak{g}) \times (0 \times 0) \times (0 \times \mathfrak{g}) \end{cases} ,$$

• Gauge fixing the edge mode

$$k = ((q, 0), (1_G, 0), (1_G, 0)) \quad , \quad \kappa = ((\alpha, 0), (0, \beta), (\gamma, 0))$$

yields EOM which, for suitable 1-forms α, β, γ , generalizes Ward's equation

$$\left(\eta^{\mu\nu} + v_{
ho} \, \epsilon^{
ho\mu\nu}
ight) \partial_{\mu} \left(q^{-1} \partial_{\nu} q
ight) = 0 \quad \text{with} \quad \eta^{\mu\nu} \, v_{\mu} v_{\nu} \, = \, 1 \quad .$$