5d semi-holomorphic higher Chern-Simons theory
and 3d integrable field theories

Alexander Schenkel

School of Mathematical Sciences, University of Nottingham, UK.

r University of
Nottingham

A~
UK | CHINA | MALAYSIA

Seminar @ Shing-Tung Yau Center of Southeast University, 16 May 2025.
Based on joint work with Benoit Vicedo [CMP 2024, arXiv:2405.08083].

Alexander Schenkel 5d 2-Chern-Simons and 3d IFT YCSEU 2025 1 /12



A bird’s-eye view on 2d Lax integrability

o A field theory on a 2d spacetime ¥ is integrable if
EOM =0 <= dsA+3[4,4 =0

for a Lax connection A = A;dt + A, dz € Q°(X x C, g), constructed from
the fields on X, depending meromorphically 9A = 0 on a Riemann surface C.
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A bird’s-eye view on 2d Lax integrability

o A field theory on a 2d spacetime ¥ is integrable if
EOM =0 <= dgAd+3[4,4 =0

for a Lax connection A = A;dt + A, dz € Q°(X x C, g), constructed from
the fields on X, depending meromorphically 9A = 0 on a Riemann surface C.

o Important consequence: The holonomy hol;(A) along Cauchy surfaces
S C X is time-independent 0;hol;(A) = 0, so its Laurent expansion

holi(4) = Y Qu(4)z" onC

nez

gives oco-many conserved charges, making the theory “exactly solvable”.
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gives oco-many conserved charges, making the theory “exactly solvable”.

o What is the origin of the Lax connection? How can | find it in examples?
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o A field theory on a 2d spacetime ¥ is integrable if
EOM =0 <= dgAd+3[4,4 =0

for a Lax connection A = A;dt + A, dz € Q°(X x C, g), constructed from
the fields on X, depending meromorphically 9A = 0 on a Riemann surface C.

o Important consequence: The holonomy hol;(A) along Cauchy surfaces
S C X is time-independent 0;hol;(A) = 0, so its Laurent expansion

holy(4) = Y Qu(4)z" onC
neZ
gives oco-many conserved charges, making the theory “exactly solvable”.

o What is the origin of the Lax connection? How can | find it in examples?

< 2018: Mostly clever guesswork, so origin remained mysterious ®
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A bird’s-eye view on 2d Lax integrability

o A field theory on a 2d spacetime ¥ is integrable if
EOM =0 <= dgAd+3[4,4 =0

for a Lax connection A = A;dt + A, dz € Q°(X x C, g), constructed from
the fields on X, depending meromorphically 9A = 0 on a Riemann surface C.

o Important consequence: The holonomy hol;(A) along Cauchy surfaces
S C X is time-independent 0;hol;(A) = 0, so its Laurent expansion

holy(4) = Y Qu(4)z" onC
neZ
gives oco-many conserved charges, making the theory “exactly solvable”.

o What is the origin of the Lax connection? How can | find it in examples?

< 2018: Mostly clever guesswork, so origin remained mysterious ®

> 2019: Gauge-theoretic methods explain geometric origin of Lax connection ©)
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Costello and Yamazaki's gauge-theoretic framework

¢ Main idea: Since the Lax connection is fundamental for integrability, one
should develop a mother theory for Lax connections and then understand how
to extract from it concrete models of 2d integrable field theories!
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Costello and Yamazaki's gauge-theoretic framework

¢ Main idea: Since the Lax connection is fundamental for integrability, one
should develop a mother theory for Lax connections and then understand how
to extract from it concrete models of 2d integrable field theories!

¢ Lax connections live on a 4d manifold X =X x C', with X a 2d spacetime
and C' a Riemann surface, and they take the form of gauge fields

A= Agdt+ Ay de+ A dz € (X, g) € QY(X,g)

modeled on the de Rham-Dolbeault complex 2" (X) = Q°*(2) & Q°*(C) and
taking values in the Lie algebra g of some structure group G.
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Costello and Yamazaki's gauge-theoretic framework

¢ Main idea: Since the Lax connection is fundamental for integrability, one
should develop a mother theory for Lax connections and then understand how
to extract from it concrete models of 2d integrable field theories!

¢ Lax connections live on a 4d manifold X =X x C', with X a 2d spacetime
and C' a Riemann surface, and they take the form of gauge fields

A= Agdt+ Ay de+ A dz € (X, g) € QY(X,g)

modeled on the de Rham-Dolbeault complex 2" (X) = Q°*(2) & Q°*(C) and
taking values in the Lie algebra g of some structure group G.

© Their dynamics is governed by the 4d Chern-Simons action

S (A) = %]éw/\CS(A) - 2L]€(wA<A,§dA+§[A7A]> ,

s s

where w = w, dz € Q40(C) is a meromorphic 1-form dw = 0 and
(,-) : g® g — C is a non-degenerate Ad-invariant symmetric form.
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How to extract 2d integrable field theories? (Sketch!)

o Key point: The action S, is not invariant under gauge transformations
g:A—9A = gAg~t —dgg!, forall g € C(X, @), with the violations
localized at 2d surface defects located at the poles 2 C C' of w

~

1:D=Y¥x2z— X =%XxC

Alexander Schenkel 5d 2-Chern-Simons and 3d IFT YCSEU 2025 4 /12
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o Key point: The action S, is not invariant under gauge transformations
g:A—9A = gAg~t —dgg!, forall g € C(X, @), with the violations
localized at 2d surface defects located at the poles 2 C C' of w

~

1:D=Y¥x2z— X =%XxC

~> Impose suitable boundary conditions at D to obtain gauge invariance!
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How to extract 2d integrable field theories? (Sketch!)

o Key point: The action S, is not invariant under gauge transformations
g:A—9A = gAg~t —dgg!, forall g € C(X, @), with the violations
localized at 2d surface defects located at the poles 2 C C' of w

j:D=Yx2——X=YXxC
~> Impose suitable boundary conditions at D to obtain gauge invariance!
© Boundary conditions in gauge theory are additional structure (edge modes)
. . h
J5(®) = Pnay vs J (A) — apay
— —
equality gauge transformation

and the boundary conditioned action S(A4, h) = S, (A) + Shay (A, h) receives
a boundary term for the edge mode field h € C>=(D,G) = C>®(%, G#).
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How to extract 2d integrable field theories? (Sketch!)

<

Key point: The action S, is not invariant under gauge transformations
g:A—9A = gAg~t —dgg!, forall g € C(X, @), with the violations
localized at 2d surface defects located at the poles 2 C C' of w

~

1:D=Y¥x2z— X =%XxC
Impose suitable boundary conditions at D to obtain gauge invariance!

Boundary conditions in gauge theory are additional structure (edge modes)

. . h

J (@) = dbay vs J(A) — anay

—_——— [ S ——
equality gauge transformation

and the boundary conditioned action S(A4, h) = S, (A) + Shay (A, h) receives
a boundary term for the edge mode field h € C>=(D,G) = C>®(%, G#).

Picking a suitable solution of the bulk equation of motion gives a 2d
integrable field theory for h on X, together with its Lax connection A = A(h).
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How to extract 2d integrable field theories? (Sketch!)

<

Key point: The action S, is not invariant under gauge transformations
g:A—9A = gAg~t —dgg!, forall g € C(X, @), with the violations
localized at 2d surface defects located at the poles 2 C C' of w

~

1:D=Y¥x2z— X =%XxC
Impose suitable boundary conditions at D to obtain gauge invariance!
Boundary conditions in gauge theory are additional structure (edge modes)
% o h
J5(®) = Pnay vs J (A) — apay
—_——— —_——

equality gauge transformation

and the boundary conditioned action S(A4, h) = S, (A) + Shay (A, h) receives
a boundary term for the edge mode field h € C>=(D,G) = C>®(%, G#).

Picking a suitable solution of the bulk equation of motion gives a 2d
integrable field theory for h on X, together with its Lax connection A = A(h).

The details of this construction are somewhat technical and can be found in
[Benini, AS, Vicedo: CMP 2022, arXiv:2008.01829].
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How about integrability in d + 1 dimensions?

¢ Long-standing problem: What are good foundations for, and examples of,
integrable field theories on a (d + 1)-dimensional spacetime M, for d > 17
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How about integrability in d + 1 dimensions?

¢ Long-standing problem: What are good foundations for, and examples of,
integrable field theories on a (d + 1)-dimensional spacetime M, for d > 17

o Taking the Lax formalism seriously, one should be looking for d-dimensional
holonomies hol;(.A) along Cauchy surfaces S; C M which are

1. time-independent d;hol;(A) = 0

2. meromorphic on some Riemann surface C' (maybe also higher-dimensional?)

such that its Laurent expansion gives co-many conserved charges.
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o Taking the Lax formalism seriously, one should be looking for d-dimensional
holonomies hol;(.A) along Cauchy surfaces S; C M which are

1. time-independent d;hol;(A) = 0
2. meromorphic on some Riemann surface C' (maybe also higher-dimensional?)

such that its Laurent expansion gives co-many conserved charges.

© This can be realized in terms of connections A on higher principal bundles
G P — M x C for a Lie d-group G. (Higher gauge theory!)
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How about integrability in d + 1 dimensions?

¢ Long-standing problem: What are good foundations for, and examples of,
integrable field theories on a (d + 1)-dimensional spacetime M, for d > 17

o Taking the Lax formalism seriously, one should be looking for d-dimensional
holonomies hol;(.A) along Cauchy surfaces S; C M which are

1. time-independent d;hol;(A) = 0
2. meromorphic on some Riemann surface C' (maybe also higher-dimensional?)

such that its Laurent expansion gives co-many conserved charges.

© This can be realized in terms of connections A on higher principal bundles
G P — M x C for a Lie d-group G. (Higher gauge theory!)

o Aim of the rest of the talk:

Focusing on the simplest non-trivial case, | will present a semi-holomorphic
2-Chern-Simons theory on 5d manifolds X = M x C which generates 3d
integrable field theories on M and their higher Lax connections.
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Lie 2-groups and Lie 2-algebras

o Strict Lie 2-groups G ~ crossed modules of Lie groups (G, H,t,«) where

e (G and H are ordinary Lie groups,
e t: H— (G is a Lie group homomorphism, and
e o:G — Aut(H) is a G-action on H,

such that, for all g € G and h,h' € H,

t(a(g.h)) = gt(h)g~" . a(t(h),h) = hh'h™}
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Lie 2-groups and Lie 2-algebras

o Strict Lie 2-groups G ~ crossed modules of Lie groups (G, H,t,«) where

e (G and H are ordinary Lie groups,
e t: H— (G is a Lie group homomorphism, and
e o:G — Aut(H) is a G-action on H,

such that, for all g € G and h,h' € H,
t(alg, b)) = gt(h)g=' , «a(t(h),n) = hh' A"

© The associated Lie 2-algebra is the crossed module of Lie algebras
(gv ha t*? Ol*) Where

e g and b are the Lie algebras of G and H, and
e t, =dt|1, : b — g and a. =da|i, : g — Der(h) via differentiation.

The structure identities differentiate to, for all z € g and ¥,y € b,

te(u(z,y)) = [, t(W)] 5 o (ta(y),y) = [y, 9]
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Lie 2-groups and Lie 2-algebras

o Strict Lie 2-groups G ~ crossed modules of Lie groups (G, H,t,«) where

e (G and H are ordinary Lie groups,
e t: H— (G is a Lie group homomorphism, and
e o:G — Aut(H) is a G-action on H,

such that, for all g € G and h,h' € H,
t(alg, b)) = gt(h)g=' , «a(t(h),n) = hh' A"

© The associated Lie 2-algebra is the crossed module of Lie algebras
(gv ha t*? Ol*) Where

e g and b are the Lie algebras of G and H, and
e t, =dt|1, : b — g and a. =da|i, : g — Der(h) via differentiation.

The structure identities differentiate to, for all z € g and ¥,y € b,
te(au(z,y) = [, t.(v)] o (), ¥) = [v,9]

I All of this is quite explicit, so with some practice one can do computations!
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Connections on trivial principal 2-bundles

o Fix a manifold X and strict Lie 2-group (G, H,t,«). A connection is a pair

A = (A, B) € QX g) x Q2(X, b)
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Connections on trivial principal 2-bundles

o Fix a manifold X and strict Lie 2-group (G, H,t,«). A connection is a pair
A = (4,B) € Q'(X,g) x 2*(X.b)

o A gauge transformation is a pair (g,7) € C®(X,G) x Q1(X,h) and it
transforms connections (g,7) : (4, B) — (9 (A, B) according to

WA = gAgt —dgg " —t.(7)
WIB = a.(g,B) - F(v) —a. (W7 4,9)

where F(7) := dvy + 5 [7,7].
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Connections on trivial principal 2-bundles

o Fix a manifold X and strict Lie 2-group (G, H,t,«). A connection is a pair
A = (4,B) € Q'(X,g) x 2*(X.b)

o A gauge transformation is a pair (g,7) € C®(X,G) x Q1(X,h) and it
transforms connections (g,7) : (4, B) — (9 (A, B) according to
WA = gAgt —dgg " —t.(7)
WIB = a.(g,B) - F(v) —a. (W7 4,9)

where F(7) := dvy + 5 [7,7].

Rem: A useful perspective on connections is as 1-cochains in the dg-Lie algebra

(0,0) d (0,1) d d (0,n)
QO(Xag) —_— Ql(Xag) — Qn(th)

L := Tot t*T t*T t*T

(—1,0) d (=1,1) d d (—1,n)
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2-Chern-Simons 4-form and action

o There exist general techniques (buzzword: Maurer-Cartan theory) to extract
from a dg-Lie algebra (L,dz,[,-]z) a Lagrangian and action.
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2-Chern-Simons 4-form and action
o There exist general techniques (buzzword: Maurer-Cartan theory) to extract
from a dg-Lie algebra (L,dz,[,-]z) a Lagrangian and action.

© These require the choice of a cyclic structure on L, which in our example
amounts to a non-degenerate pairing (-,-) : g ® h — C satisfying

(gzg " (g y) = (=y) , (tW).y) = &)y
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2-Chern-Simons 4-form and action

o There exist general techniques (buzzword: Maurer-Cartan theory) to extract
from a dg-Lie algebra (L,dz,[,-]z) a Lagrangian and action.

© These require the choice of a cyclic structure on L, which in our example
amounts to a non-degenerate pairing (-,-) : g ® h — C satisfying

(grg~haulg,y) = (ry) , (Lw).y) = 1))
Def: The 2-Chern-Simons 4-form associated to a connection A = (A, B) is
CS(A) 1= (A, dpA+ L [A AL,
= (F(4) - }1.(B), B) - }d(A, B) € 04(X)
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2-Chern-Simons 4-form and action

o There exist general techniques (buzzword: Maurer-Cartan theory) to extract
from a dg-Lie algebra (L,dz,[,-]z) a Lagrangian and action.

© These require the choice of a cyclic structure on L, which in our example
amounts to a non-degenerate pairing (-,-) : g ® h — C satisfying

c(g,y) = (@), (W), Y) = &),y

Def: The 2-Chern-Simons 4-form associated to a connection A = (A, B) is

(gzg™!

CS(A) := (A, FdLA+ 5 [A AL,
— (F(A) - 1t.(B),B) — d(4,B) € 9(X)

¢ In the 5d semi-holomorphic case X = M x C, choosing a meromorphic
1-form w = w, dz € QL(C) allows us to define the action

™

S (A) = QL]iwACS(A) ,

generalizing Costello-Yamazaki from 4d to 5d.
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Behavior near the poles 2 C C of w

o At the 3d volume defects j : D=Mx% <3 X =M xC there are
interesting phenomena captured by the holomorphic jet expansions

Nnge—1
() = ( Z () ® 62) (ng = order of pole )
xEpoles

p=0
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Behavior near the poles 2 C C of w

o At the 3d volume defects j : D=Mx% <3 X =M xC there are
interesting phenomena captured by the holomorphic jet expansions

Nnge—1
3¢ = ( Z Pt () ® 62) (ny = order of pole x)
xEpoles

p=0

¢ The defect data live in the jet Lie groups
II ="'¢, B*= ][] /7~ 'H

xEpoles TEpoles

and their Lie algebras g* and h*.
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Behavior near the poles 2 C C of w

o At the 3d volume defects j : D=Mx% <3 X =M xC there are
interesting phenomena captured by the holomorphic jet expansions

Nnge—1
iC) = ( > S AOKE ei) (ns = order of pole z)
p=0 xEpoles
¢ The defect data live in the jet Lie groups
¢c= [ /~'¢, #*= ][ J~'H
zEpoles xEpoles

and their Lie algebras g* and h*.
Prop: Under gauge transformations (g,7) € C*(X,G) x Q' (X, b):

5. (07(4,8) = 54,8 + 3 [ (@03 W3 @) Pl (),
(G (), dud” () + E 015D,

— (g™ (9) 3 (9) ™" + 3" (t(7)), 3" (ax(g. B)) + Fu (j*(v))»w)

Alexander Schenkel 5d 2-Chern-Simons and 3d IFT YCSEU 2025 9 /12



Boundary conditions, edge modes and boundary action

¢ From this specific form of gauge symmetry violation of S, one observes that
a suitable class of boundary conditions is given by isotropic Lie 2-subgroups

(G°,H,t*,0%) C (G* H*1*,0%) suchthat (- )y| om0 =0
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Boundary conditions, edge modes and boundary action

¢ From this specific form of gauge symmetry violation of S, one observes that
a suitable class of boundary conditions is given by isotropic Lie 2-subgroups

(G°,H,t*,0%) C (G* H*1*,0%) suchthat (- )y| om0 =0
o This yields edge modes (k,x) € C°(M,G#) x Q'(M, h*) implementing

(k=) 5*(A, B) € QY (M, g°) x Q(M,§°)
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Boundary conditions, edge modes and boundary action

¢ From this specific form of gauge symmetry violation of S, one observes that
a suitable class of boundary conditions is given by isotropic Lie 2-subgroups

(G°,H,t*,0%) C (G* H*1*,0%) suchthat (- )y| om0 =0
o This yields edge modes (k,x) € C°(M,G#) x Q'(M, h*) implementing
k) j*(A,B) € Q'(M,g°) x Q*(M,b°)

¢ The induced action on bulk fields (A, B) and edge modes (k, k) is

S((A, B), (k.x)) = i [ o (P() - 41.(8).5)
tg [ (€800 (504 (), ) + 2F ),

() e+ ),
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A recipe for constructing 3d integrable field theories

1. Fix input data of the 5d theory, i.e.
e meromorphic 1-form w € Q4°(C),
e Lie 2-group (G, H, t, &) with cyclic structure (-,-) : g® h — C, and
e isotropic Lie 2-subgroup (G°, H®,t*,a*) C (G*, H*,t*, o).
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A recipe for constructing 3d integrable field theories

1. Fix input data of the 5d theory, i.e.
e meromorphic 1-form w € Q°(C),
e Lie 2-group (G, H, t, &) with cyclic structure (-,-) : g® h — C, and
e isotropic Lie 2-subgroup (G°, H®,t*,a*) C (G*, H*,t*, o).
2. Work in gauge A; = 0 and B,z = 0, so that the bulk equations of motion

become w A dA =0 and w A B = 0. Choose admissible bulk solution
(A, B) and solve boundary conditions for higher Lax connection:

(om)%(A, B) € QY (M, g%) x Q*(M,h°) = (A, B) = (A(k, x), B(k, r))
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A recipe for constructing 3d integrable field theories

1. Fix input data of the 5d theory, i.e.
e meromorphic 1-form w € Q4°(C),
e Lie 2-group (G, H, t, &) with cyclic structure (-,-) : g® h — C, and
e isotropic Lie 2-subgroup (G°, H®,t*,a*) C (G*, H*,t*, o).

2. Work in gauge Az = 0 and B;z = 0, so that the bulk equations of motion
become w A JA =0 and w A OB = 0. Choose admissible bulk solution
(A, B) and solve boundary conditions for higher Lax connection:
(hr)5*(4, B) € Q' (M,g°) x Q*(M,5°) = (A, B) = (A(k, ), B(k,r))
3. Inserting back into action yields 3d integrable field theory

Suako) = [ ((093°(A),03 (4957 (4).0) + 2P (),

+ (t2(k),dmr + L[k, /f}>>w)
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A recipe for constructing 3d integrable field theories

1. Fix input data of the 5d theory, i.e.
e meromorphic 1-form w € Q4°(C),
e Lie 2-group (G, H, t, &) with cyclic structure (-,-) : g® h — C, and
e isotropic Lie 2-subgroup (G°, H®,t*,a*) C (G*, H*,t*, o).

2. Work in gauge Az = 0 and B;z = 0, so that the bulk equations of motion

become w A JA =0 and w A OB = 0. Choose admissible bulk solution

(A, B) and solve boundary conditions for higher Lax connection:
(hr)5*(4, B) € Q' (M,g°) x Q*(M,5°) = (A, B) = (A(k, ), B(k,r))
3. Inserting back into action yields 3d integrable field theory

1 5% z K) %
Ssa(k, k) = 5/ (<<(k’r")3 (A),aZ ("M 5*(A), k) + 2Fp (k)
M
+ <<tf(f£),dMl-i + %[m, /f}>>w)

I' By construction, the EOM from Ss is equivalent to flatness of (A, B)!
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Some first concrete examples with C' = CP!

o Example 1: (3d Chern-Simons theory)
e Choose Lie 2-group (G, G,id, Ad) and

w=1=2dr, G =Gx(lgxg) , H° =1lcx (lgxg)
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Some first concrete examples with C' = CP!

o Example 1: (3d Chern-Simons theory)
e Choose Lie 2-group (G, G,id, Ad) and
w==2dz , G =Gx(laxg) , H° =1lax (lexg)
e Gauge fixing the edge mode (k,x) = ((1¢, (1¢,0)), (0, (,0))) gives

Ssa(a) = — /M (a, 3dma+ 5 [a,0]) with (A,B) = (oe, =1 FM(a)>
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Some first concrete examples with C' = CP!
o Example 1: (3d Chern-Simons theory)
e Choose Lie 2-group (G, G, id, Ad) and
w==2dz , G =Gx(laxg) , H° =1lax (lexg)
e Gauge fixing the edge mode (k,x) = ((1¢, (1¢,0)), (0, (,0))) gives

Ssa(a) = — /M (a, 3dma+ 5 [a,0]) with (A,B) = (oe, =1 FM(a)>

o Example 2: (3d Ward equation)
e Choose Lie 2-group T[1]G = (G, g, 1@, Ad) and

_ 2l —a) G° = (laxg) x (Gxg)x (laxg) ,
(z=71)2(z —s)? ’ H® = (0xg)x(0x0)x(0xg)
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Some first concrete examples with C' = CP!

o Example 1: (3d Chern-Simons theory)
e Choose Lie 2-group (G, G,id, Ad) and
w==2dz , G =Gx(laxg) , H° =1lax (lexg)

e Gauge fixing the edge mode (k,x) = ((1¢, (1¢,0)), (0, (,0))) gives

Ssa(a) = —/ <a, % dyra + % [a,a]> with (A, B) = (oe, =1 FM(a)>
M
o Example 2: (3d Ward equation)
e Choose Lie 2-group T[1]G = (G, g, 1@, Ad) and

Il —a) {

" = G° = (la xg) x (Gxg)x(le x g)

(z—1)2(z—s)2 " H® = (0% g) % (0% 0) x (0xg)

)

e Gauge fixing the edge mode

k= (((], 0)7 (1G7 0)5 (1Ga 0)) ) K= ((U‘v 0)7 (07 3)7 (’}/7 0))
yields EOM which, for suitable 1-forms «, (3, ~, generalizes Ward's equation
(" +v,€")0u(q "Ovg) = 0 with 7" v, = 1
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