The U-plane of rank-one 4d $\mathcal{N}=2 \mathrm{KK}$ theories

Cyril Closset

University of Birmingham \& Royal Society URF

YCSEU, Nanjing, 19 October 2021
based on 2107.03509 with H. Magureanu

Preamble: the SW solution for SQCD

Rational elliptic surfaces and rational sections

4d SQFTs of rank one, revisited

The U-plane of the $E_{n} 5 \mathrm{~d}$ SCFTs

5d BPS quivers

Preamble: the SW solution for SQCD

The Seiberg-Witten solution

Let us first go back to 'basics':

hep-th/9407087, RU-94-52, LAS-94-43

Electric-Magnetic Duality,
Monopole Condensation, And Confinement In $N=2$ Supersymmetric Yang-Mills Theory

N. Seiberg

Department of Physics and Astronomy Rutgers University, Piscataway, NJ 08855-0849, USA

and

Institute for Advanced Study
Princeton, NJ 08540, USA
and
E. Witten

Institute for Advanced Study
Princeton, NJ 085 ¢0, USA
and dyon spectrum of $N=2$ supersymmetric gange theory Ne study the vacuum structure and dyon (2). The theory turns out to have remarkably rich in four dimensions, with gange gred precisely; exact formulas can and physical properties which can nonetheless bedric on the moduli space be obtained, for instance, for electron and dyon maine-Montonen electric-magnetic duality. of vacua. The description involves a version of be a weakly coupled theory of monopoles. The "strongly coupled" vacuum turns out is described by monopole condensation. and with a suitable perturbation confinement is described by monopole condens.

$$
\begin{aligned}
& \begin{array}{l}
\text { mober of new of quanturn vacula gavge group is gatuge theories } \\
\text { byy the plysical pl }
\end{array}
\end{aligned}
$$

4d $\mathcal{N}=2$ SQCD

We are interested in 4d $\mathcal{N}=2$ supersymmetric gauge theories. For simplicity, focus on SQCD with $S U(2)$ gauge group:

- Vector multiplet for gauge group $S U(2)$:

$$
\mathcal{V}=\left(\phi, A_{\mu}, \lambda_{I}, \bar{\lambda}^{I}, D_{I J}\right)
$$

Scalar potential includes term $V=|[\bar{\phi}, \phi]|^{2} \geq 0$.

- N_{f} 'flavors': hypermultiplets in the fundamental, $\mathbf{2} \oplus \overline{\mathbf{2}}$, with masses m_{i}.
- Flavour symmetry algebra $\mathfrak{g}_{F}: \mathfrak{s o}\left(2 N_{f}\right)$ if $m_{i}=0, \forall i, \mathfrak{u}\left(N_{f}\right)$ if $m_{i}=m$, and $\mathfrak{u}(1)^{N_{f}}$ with generic masses.
- Asymptotic freedom implies $N_{f} \leq 4$. The theory with $N_{f}=4$ and $\mathfrak{g}_{F}=\mathfrak{s o}(8)$ is a 4d SCFT with an exactly marginal gauge coupling.

4d $\mathcal{N}=2$ SQCD

- Generic vacuum is on the Coulomb branch:

$$
\phi=-\frac{i}{\sqrt{2}}\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right), \quad S U(2) \rightarrow U(1)
$$

The SW solution gives the exact low-energy effective action for the IR $U(1)$:

$$
S=\int d^{4} x \operatorname{Im}(\tau(a))\left(F_{\mu \nu} F^{\mu \mu}+\partial_{\mu} a \partial^{\mu} a+\cdots\right)
$$

- By supersymmetry, the CB metric is determined by an holomorphic function, the prepotential:

$$
\tau=\frac{\partial^{2} \mathcal{F}}{\partial a^{2}}
$$

- The CB is parameterised by the gauge-invariant parameter:

$$
u=\left\langle\operatorname{Tr}\left(\phi^{2}\right)\right\rangle \approx-a^{2}+\cdots
$$

The CB of $4 \mathrm{~d} \mathcal{N}=2 \mathrm{SQCD}$ is 'the u-plane'.
The point at infinity, $u=\infty$, is the weak coupling point.

The u-plane of SQCD

Electric-magnetic duality of a $U(1)$ vector multiplet:

$$
\binom{a_{D}}{a} \rightarrow \mathbb{M}_{*}\binom{a_{D}}{a}, \quad \mathbb{M}_{*} \in \mathrm{SL}(2, \mathbb{Z}) \cong\left\langle S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad T=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle
$$

with $S L(2, \mathbb{Z})$ monodromies of the 'electromagnetic periods' (modulo constant shifts if $\left.m_{i} \neq 0\right)$. We have:

$$
a_{D}=\frac{\partial \mathcal{F}}{\partial a}, \quad \tau=\frac{\partial a_{D}}{\partial a}
$$

For fixed masses, the u-plane has the form:

- paths $\gamma_{v}, v=1, \cdots, k$, and $v=\infty$.
- $\gamma_{\infty}=-\left(\gamma_{1}+\cdots+\gamma_{k}\right)$
- If m_{i} generic, $k=N_{f}+2$.
- $\mathbb{M}_{\infty} \prod_{l=1}^{k} \mathbb{M}_{* l}=\mathbf{1}$.

We will think of the u-plane as a projective plane, $\mathbb{P}^{1} \cong\{u\}$ with a distinguished point $u=\infty$.

The SW solution

Postulate that τ with $\operatorname{Im}(\tau) \geq 0$ is the modular parameter of an elliptic curve, E_{u} :

- We then have:

$$
\begin{gathered}
\tau=\frac{\omega_{D}}{\omega_{a}}=\frac{\partial a_{D}}{\partial a}, \\
\omega_{D}=\frac{d a_{D}}{d u}=\int_{\gamma_{B}} \boldsymbol{\omega}, \\
\omega_{a}=\frac{d a}{d u}=\int_{\gamma_{A}} \boldsymbol{\omega} .
\end{gathered}
$$

- The SW solution is a specific elliptic fibration over the CB. The one-parameter family of curves E_{u} is usually called 'the SW curve'.
- The 'Seiberg-Witten geometry' is the total space of the SW fibration over the u-plane.
- It necessarily has singular fibers. Kodaira classification.

The SW solution

- Singularity at infinity determined at weak coupling (1-loop β-function):

$$
I_{4-N_{f}}^{*}: \quad \mathbb{M}_{\infty}=-T^{4-N_{f}}
$$

- Simple singularities in the interior: I_{n} singularity (multiplicative fiber):

$$
I_{n}: \quad \mathbb{M}_{*}=T^{n}
$$

The actual monodromy is conjugate to T^{n}.
If a single dyon of charge (m, q) becomes massless at $u=u_{*}$:

$$
\mathbb{M}_{*}^{(m, q)}=B^{-1} T B=\left(\begin{array}{cc}
1+m q & q^{2} \\
-m^{2} & 1-m q
\end{array}\right)
$$

- Other possibilities, from the Kodaira classification of singular elliptic fibers:

$$
\begin{array}{llll}
I I: & \mathbb{M}_{*}=(S T)^{-1}, & I I^{*}: & \mathbb{M}_{*}=S T \\
I I I: & \mathbb{M}_{*}=S^{-1}, & I I I^{*}: & \mathbb{M}_{*}=S \\
I V: & \mathbb{M}_{*}=(S T)^{-2}, & I V^{*}: & \mathbb{M}_{*}=(S T)^{2}
\end{array}
$$

The u-plane of massless SQCD
For massless SQCD, we have:

I_{n} singularity: n mutually local particles become massless.

The symmetry group of $4 \mathrm{~d} \mathcal{N}=2$ SQCD

The (global) symmetry group of a theory is, by definition, the group that acts effectively on gauge-invariant states. In particular, we must quotient by gauge redundancies.

The global symmetry of massless SQCD is easily determined in the UV:

$$
G_{F}=S O\left(2 N_{f}\right) / \mathbb{Z}_{2}
$$

We also write this as:

N_{f}	0	1	2	3	4
G_{F}	-	$U(1)$	$\left(S U(2) / \mathbb{Z}_{2}\right) \times\left(S U(2) / \mathbb{Z}_{2}\right)$	$S U(4) / \mathbb{Z}_{4}$	$\operatorname{Spin}(8) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$

The pure $S U(2)$ gauge theory ($N_{f}=0$) has a one-form symmetry:
[Gaiotto, Kapustin, Seiberg, Willett, 2014]

$$
\mathcal{Z}^{[1]}=\mathbb{Z}_{2}
$$

which acts on Wilson loops in the fundamental (i.e. background quark worldlines):

$$
\mathbb{Z}_{2}: W \rightarrow-W
$$

The symmetry group of $4 \mathrm{~d} \mathcal{N}=2$ SQCD

We would like to determine the symmetry directly in the IR.
Let us start with a partial answer:
Claim: The semi-simple part of the flavor symmetry algebra $\mathfrak{g}_{F}^{\mathrm{NA}}=\operatorname{Lie}\left(G_{F}\right)^{\text {NA }}$ is given in terms of the Kodaira singularities in the interior:

$$
\mathfrak{g}_{F}^{\mathrm{NA}}=\bigoplus_{v=1}^{k} \mathfrak{g}_{v}
$$

with:

F_{v}	I_{n}	I_{m}^{*}	$I I$	$I I I$	$I V$	$I I^{*}$	$I I I^{*}$	$I V^{*}$
\mathfrak{g}_{v}	$\mathfrak{s u}(n)$	$\mathfrak{s o}(8+2 m)$	-	$\mathfrak{s u}(2)$	$\mathfrak{s u}(3)$	\mathfrak{e}_{8}	\mathfrak{e}_{7}	\mathfrak{e}_{6}

We will soon explain how to determine G_{F} itself, directly from the SW geometry.

Rational elliptic surfaces and rational sections

SW curve and periods: generalities

It is convenient to bring the SW curve into the Weierstrass normal form:

$$
y^{2}=4 x^{3}-g_{2}(u, m) x-g_{3}(u, m)
$$

The singular fibers are located along the zeros of the discriminant:

$$
\Delta(u)=g_{2}(u)^{3}-27 g_{3}(u)^{2}
$$

For SQCD, this is a polynomial of order $N_{f}+2$. At generic masses, we have $N_{f}+2$ simple roots in u (giving rise to I_{1} singularities).

Example: For pure $S U(2)$, we have:

$$
g_{2}(u)=\frac{4 u^{2}}{3}-4 \Lambda^{4}, \quad g_{3}(u)=-\frac{8 u^{3}}{27}+\frac{4}{3} u \Lambda^{4}
$$

and the discriminant:

$$
\Delta=16 \Lambda^{8}\left(u^{2}-4 \Lambda^{4}\right)
$$

SW curve and periods: generalities

Kodaira's classification of singularities of elliptic fibrations:

$$
g_{2} \sim\left(u-u_{*}\right)^{\operatorname{ord}\left(g_{2}\right)}, \quad g_{3} \sim\left(u-u_{*}\right)^{\operatorname{ord}\left(g_{3}\right)}, \quad \Delta \sim\left(u-u_{*}\right)^{\operatorname{ord}(\Delta)} .
$$

fiber	τ	$\operatorname{ord}\left(g_{2}\right)$	$\operatorname{ord}\left(g_{3}\right)$	$\operatorname{ord}(\Delta)$	M_{*}	flavor
I_{k}	$i \infty$	0	0	k	T^{k}	$\mathfrak{s u}(k)$
I_{k}^{*}	$i \infty$	2	3	$k+6$	$-T^{k}$	$\mathfrak{s o}(2 k+8)$
I_{0}^{*}	τ_{0}	≥ 2	≥ 3	6	$-\mathbf{1}$	$\mathfrak{s o}(8)$
$I I$	$e^{\frac{2 \pi i}{3}}$	≥ 1	1	2	$(S T)^{-1}$	-
$I I^{*}$	$e^{\frac{2 \pi i}{3}}$	≥ 4	5	10	$(S T)$	\mathfrak{e}_{8}
$I I I$	i	1	≥ 2	3	S^{-1}	$\mathfrak{s u}(2)$
$I I I^{*}$	i	3	≥ 5	9	S	\mathfrak{e}_{7}
$I V$	$e^{\frac{2 \pi i}{3}}$	≥ 2	2	4	$(S T)^{-2}$	$\mathfrak{s u}^{2}(3)$
$I V^{*}$	$e^{\frac{2 \pi i}{3}}$	≥ 3	4	8	$(S T)^{2}$	\mathfrak{e}_{6}

SW curve and periods: generalities

We are interested in the 'physical periods':

$$
a_{D}=\int_{\gamma_{B}} \lambda_{\mathrm{SW}}, \quad \quad a=\int_{\gamma_{A}} \lambda_{\mathrm{SW}}
$$

with the Seiberg-Witten differential such that:

$$
\frac{d \lambda_{\mathrm{SW}}}{d u}=\omega, \quad \omega \equiv \frac{d y}{x}
$$

Thus, we can find the physical periods from the 'geometric periods':

$$
\omega_{D}=\int_{\gamma_{B}} \boldsymbol{\omega}, \quad \quad \omega_{a}=\int_{\gamma_{A}} \boldsymbol{\omega}
$$

At any fixed m, they satisfy a standard Picard-Fuchs equation:

$$
\Delta(u) \frac{d^{2} \omega}{d u^{2}}+P(u) \frac{d \omega}{d u}+Q(u) \omega=0
$$

SW geometry and rational elliptic surface

The low-energy physics on the CB is determined by the (affine) bundle:

$$
\mathbb{C}^{2} \rightarrow(\text { SW geom }) \rightarrow \overline{\mathcal{B}} \cong\{u\}
$$

with the fibers given by the periods $\left(a_{D}, a\right)$.

Once we geometrize the periods by introducing the SW curve E_{u}, we have:

$$
E \rightarrow \mathcal{S} \rightarrow \overline{\mathcal{B}}
$$

We compactify the base by adding the point at infinity:

$$
\overline{\mathcal{B}} \cong\{u\} \cong \mathbb{P}^{1}
$$

The SW geometry \mathcal{S} is then a rational elliptic surface (RES) with a section.
Note: Any (resolved) RES $\tilde{\mathcal{S}}$ can be obtained as a blow up of the projective plane at 9 points, $d P_{9}=\mathrm{Bl}_{9}\left(\mathbb{P}^{2}\right)$. This is also called 'half-K3 surface' by string theorists. A deep fact is then that:

$$
H_{2}(\tilde{\mathcal{S}}, \mathbb{Z}) \cong\langle(O), E\rangle \oplus\left(-E_{8}\right)
$$

with E_{8} denoting the E_{8} lattice, for the 2-cycles with the intersection pairing.

SW geometry and rational elliptic surface

The singular fibers lead to ADE singularities on \mathcal{S}, in correspondence with the ADE 'flavor' type.
They admit a standard resolution, $\tilde{\mathcal{S}} \rightarrow \mathcal{S}$. (Kodaira-Neron model.)

$$
\pi^{-1}\left(U_{*, v}\right)=F_{v} \cong \sum_{i=0}^{m_{v}-1} \widehat{m}_{v, i} \Theta_{v, i},
$$

Example: The E_{n} family.

(b) $I_{5}\left(E_{4}\right)$

(c) $I_{1}^{*}\left(E_{5}\right)$

(d) $I V\left(E_{6}\right)$

(e) $I I I\left(E_{7}\right)$

(f) $I I\left(E_{8}\right)$

The Mordell-Weil group of rational section

Elliptic curves are additive groups:

$$
P_{1}+P_{2}=P_{3}
$$

Given an elliptic fibration $E \rightarrow \mathcal{S} \rightarrow \mathbb{P}^{1}$, there may exist non-trivial rational sections. In Weierstrass form:

$$
P=(x(u), y(u)), \quad x(u), y(u) \in \mathbb{C}(u)
$$

They form a finitely generated abelian group, the Mordell-Weil group:

$$
\Phi=\mathrm{MW}(\mathcal{S}) \cong \mathbb{Z}^{\mathrm{rk}(\Phi)} \oplus \mathbb{Z}_{k_{1}} \oplus \cdots \oplus \mathbb{Z}_{k_{t}}
$$

The number of free generators, $\operatorname{rk}(\Phi) \geq 0$, is called the rank of the MW group.
The trivial element in Φ is the zero section, $O=(\infty, \infty)$.
Importantly, the MW group can have non-trivial torsion elements, $k_{i} P_{\text {tor }}=O$.

The classification of rational elliptic surfaces

Rational elliptic surfaces \mathcal{S} are fully classified.
They are characterised by:

- A set of 'allowed' singular fibers, $\left(F_{v}\right)$.
- The MW group Φ.

In fact, in most cases, the set of singular fibers fully determines \mathcal{S}.

A basic but powerful global constraint is:

$$
\left.\sum_{v} \operatorname{ord}(\Delta)\right|_{U_{* v}}=12
$$

where the sum includes ' $v=\infty$ '. There is thus a finite set of allowed singularities. Additional considerations show that these are the following 20 :

$$
I_{1}, \cdots, I_{9}, \quad I_{0}^{*}, \cdots, I_{4}^{*}, \quad, I I, I I I, I V, I I^{*}, I I I^{*}, I V^{*} .
$$

Total number of distinct RES: 289.

4d SQFTs of rank one, revisited

Fixing the fiber at infinity
The RES perspective, and Persson's classification, gives us a bird's-eye view of rank-one $4 \mathrm{~d} \mathcal{N}=2$ theories.

The basic idea, generalising [Caorsi, Cecotti, 2018], is that the UV $\mathcal{N}=2$ SQFT is determined by the fiber at infinity:

$$
\mathcal{T}_{F_{\infty}} \quad \longleftrightarrow \quad\left\{\mathcal{S} \mid \pi^{-1}(\infty)=F_{\infty}\right\}
$$

F_{∞}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}	I_{8}	I_{9}
$D_{S^{1}} \mathcal{T}_{5 \mathrm{~d}}$	E_{8}	E_{7}	E_{6}	E_{5}	E_{4}	E_{3}	E_{2}	E_{1} or \widetilde{E}_{1}	E_{0}
\#S	227	140	77	51	26	16	6	$2+2$	1
F_{∞}	II	III	IV	I_{0}^{*}	I_{1}^{*}	I_{2}^{*}	I_{3}^{*}	I_{4}^{*}	
$\mathcal{T}_{4 \mathrm{~d}}$	E_{8}	E_{7}	E_{6}	D_{4}	D_{3}	D_{2}	$N_{f}=1$	$N_{f}=0$	
$\# \mathcal{S}$	137	93	49	19	13	6	2	1	
F_{∞}		\uparrow			$I V^{*}$	III*	$I I^{*}$	T	
$\begin{aligned} & \mathcal{T}_{4 \mathrm{~d}} \\ & \# \mathcal{S} \end{aligned}$					$A_{2}\left(H_{2}\right)$ 8	$A_{1}\left(H_{1}\right)$ 4	$-\left(H_{0}\right)$ 2		
MN theories									

Fixing the fiber at infinity

Some comments:

- Fixing F_{∞}, the list of distinct RES with such a fiber gives the number of distinct CB configurations for $\mathcal{T}_{F_{\infty}}$, which we denote by:

$$
\mathcal{S} \cong\left(F_{\infty}, F_{1}, \cdots, F_{k}\right)
$$

For instance, pure $S U(2)$ has a single CB configuration, $\mathcal{S} \cong\left(I_{4}^{*}, I_{1}, I_{1}\right)$.

- The above 'periodic table' includes the 3 'classic AD SCFTs [Argyres, Douglas, 1995] and the $3 E_{n} \mathrm{MN}$ theories [Minahan, Nemeschansky, 1996].
- It does not include the other 4d SCFTs [Argyres, Wittig, 2007; Argyres, Lotito, Lu, Martone, 2016] with enhanced CB (although, see [Caorsi, Cecotti, 2016]).
- Conjecture (?): the table gives the full list of CB configurations for rank-one 4d $\mathcal{N}=2$ SQFTs with a 'trivial' CB (i.e. with only a $U(1)$ vector multiplet).
- The top row corresponds to 5d SCFTs on $\mathbb{R}^{4} \times S^{1}$, as we will show.
- If we choose $F_{\infty}=I_{0}$ (the trivial fiber), we get the E-string on $\mathbb{R}^{4} \times T^{2}$. There are therefore 289 distinct CB configurations for that theory.

Symmetry group and rational sections

We claimed above that the non-abelian part of the flavour symmetry was captured by the singular fibers (in the interior), $F_{v \neq \infty}$.

We also claim that each generator of $\Phi_{\text {free }}=\Phi / \Phi_{\text {tor }}$ gives rise to a $U(1)$ flavor symmetry.

The full flavour symmetry algebra is then:

$$
\mathfrak{g}_{F}=\bigoplus_{s=1}^{\operatorname{rk}(\Phi)} \mathfrak{u}(1)_{s} \oplus \bigoplus_{v=1}^{k} \mathfrak{g}_{v}
$$

One can also show that:

$$
\operatorname{rank}\left(\mathfrak{g}_{F}\right)=8-\operatorname{rank}\left(\mathfrak{g}_{\infty}\right)
$$

Example: $S U(2), N_{f}=1$. The massless CB configuration is $\mathcal{S} \cong\left(I_{3}^{*}, 3 I_{1}\right)$. In that case, one indeed finds $\Phi \cong \mathbb{Z}$, in agreement with $\mathfrak{g}_{F}=\mathfrak{u}(1)$.

Symmetry group and rational sections

The global form of flavour group can be determined by analysing the full MW group. For simplicity, assume that $\operatorname{rk}(\Phi)=0$, so that G_{F} is semi-simple:

$$
\Phi=\Phi_{\text {tor }}=\mathbb{Z}_{k_{1}} \oplus \cdots \oplus \mathbb{Z}_{k_{t}}
$$

Let \tilde{G}_{F} denote the simply-connected group such that $\mathfrak{g}_{F}=\operatorname{Lie}\left(G_{F}\right)$.
Define the subgroup of $\Phi_{\text {tor }}$ of 'interior-narrow sections':

$$
\mathcal{Z}^{[1]}=\left\{P \in \Phi_{\text {tor }} \mid(P) \text { intersects } \Theta_{v, 0} \text { for all } F_{v \neq \infty}\right\}
$$

and denote by \mathscr{F} the cokernel of the inclusion map $\mathcal{Z}^{[1]} \rightarrow \Phi_{\text {tor }}$:

$$
0 \rightarrow \mathcal{Z}^{[1]} \rightarrow \Phi_{\text {tor }} \rightarrow \mathscr{F} \rightarrow 0
$$

Then, we claim that:

- $G_{F}=\tilde{G}_{F} / \mathscr{F}$ is the flavour symmetry group.
- $\mathcal{Z}^{[1]}$ is the one-form symmetry group.

Symmetry group and rational sections

The proof of the above statements goes through local mirror symmetry and borrows arguments from the F-theory literature. [Aspinwall, 1998; Mayrhofer, Morrison, Till, Weigand, 2014; Cvetic, Lin, 2017; Monnier, Moore, Park, 2017]. We will not go through it today.

A complementary way to understand the result is by taking the CB configuration of $\mathcal{T}_{F_{\infty}}$ with generic masses, so that we have the explicit symmetry breaking pattern:

$$
G_{F} \rightarrow U(1)^{\operatorname{rank}\left(G_{F}\right)}
$$

These $U(1)$'s are generated by sections in $\Phi_{\text {free }}$. Furthermore, there is a natural lattice, the (narrow) Mordell-Weil lattice of \mathcal{S}, which was computed for any \mathcal{S}. [Shioda, 1990] Using these mathematical results, we can confirm the above claims in a case-by-case basis.
(The narrow MWL is the weight lattice of G_{F}.)

Symmetry group and rational sections

Example: SQCD. For massless SQCD, one finds:

N_{f}	0	1	2	3	4
\mathcal{S}	$\left(I_{4}^{*}, 2 I_{1}\right)$	$\left(I_{3}^{*}, 3 I_{1}\right)$	$\left(I_{2}^{*}, 2 I_{2}\right)$	$\left(I_{1}^{*}, I_{4}, I_{1}\right)$	$\left(I_{0}^{*}, I_{0}^{*}\right)$
Φ	\mathbb{Z}_{2}	\mathbb{Z}	\mathbb{Z}_{2}^{2}	\mathbb{Z}_{4}	\mathbb{Z}_{2}^{2}

This matches the results expected from the UV:

- $N_{f}=0$: we have $\Phi_{\text {tor }}=\mathcal{Z}^{[1]}=\mathbb{Z}_{2}$, in agreement with known results.
- $N_{f}=2:$ we have $\Phi_{\text {tor }}=\mathscr{F}$ and $\left.G_{F}=S U(2) \times S U(2)\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.
- $N_{f}=3$: we have $\Phi_{\text {tor }}=\mathscr{F}$ and $G_{F}=S U(4) / \mathbb{Z}_{4}$.
- $N_{f}=4:$ we have $\Phi_{\text {tor }}=\mathscr{F}$ and $G_{F}=\operatorname{Spin}(8) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.

Symmetry group and rational sections

The general result can also be applied to non-Lagrangian theories. We have the following interesting RES:
[Miranda, Persson, 1986]

- $\mathcal{S}=\left(I I, I I^{*}\right)$, with $\Phi=0$.
- If $F_{\infty}=I I^{*}$, we have the AD point H_{0} with trivial flavour group.
- If $F_{\infty}=I I$, we have the E_{8} MN SCFT, with $G_{F}=E_{8}$.
- $\mathcal{S}=\left(I I I, I I I^{*}\right)$, with $\Phi=\mathbb{Z}_{2}$.
- If $F_{\infty}=I I I^{*}$, we have the AD point H_{1} with flavour group $G_{F}=S O(3)$.
- If $F_{\infty}=I I I$, we have the E_{7} MN SCFT, with $G_{F}=\mathrm{E}_{7} / \mathbb{Z}_{2}$.
- $\mathcal{S}=\left(I V, I V^{*}\right)$, with $\Phi=\mathbb{Z}_{3}$.
- If $F_{\infty}=I V^{*}$, we have the AD point H_{2} with flavour group $G_{F}=\operatorname{PSU}(3)$.
- If $F_{\infty}=I V$, we have the E_{6} MN SCFT, with $G_{F}=\mathrm{E}_{6} / \mathbb{Z}_{3}$.

All these flavour groups are centerless. For the MN theories, this determination reproduces recent results [Bhardwaj, 2021]. The H_{1} flavour group was determined in [Buican, Jiang, 2021], and the H_{2} flavour group is a new result.

Systematic analysis of CB configurations

Using the Persson classification and some direct computations, we can map out the full set of CB configurations of a given SQFT \mathcal{T}_{∞}, in principle.
Example: $S U(2), N_{f}=3$. There are 13 allowed configurations:

Modularity of the u-plane

For any 4d $\mathcal{N}=2$ SQFT with mass parameters m, we have an 'extended CB' where m are viewed as VEVs for background vector multiplets.

There are many 'special loci' on the extended Coulomb branch which have modular properties. More precisely, it can happen that, at some fixed values of the masses, the u-plane is a modular curve:

$$
\overline{\mathcal{B}} \cong \mathbb{H} / \Gamma, \quad \Gamma \subset S L(2, \mathbb{Z})
$$

for some particular modular subgroup Γ. When this happens, the map:

$$
u: \mathbb{H} / \Gamma \rightarrow \overline{\mathcal{B}}: \tau \mapsto u(\tau)
$$

is an isomorphism. The Γ-invariant function $u(\tau)$ is called the Hauptmodul (or principal modular function) of Γ.

When the CB is modular, the singularities are in one-to-one correspondence with cusps and elliptic points of Γ. This simplifies the analysis of e.g. the monodromy group.

Note: even when the CB is not modular, it is advantageous to work on the τ-plane. See [Aspman, Furrer, Manschot, 2000, 2021] for recent discussions.

Modular curves for SQCD

Massless SQCD with $N_{f} \neq 1$ is modular:

Theory	$\Delta(u)=0$	$F_{v \neq \infty}$	F_{∞}	Modular Function	Monodromy	Cusps τ
$N_{f}=0$	$+1,-1$	I_{1}, I_{1}	I_{4}^{*}	$u(\tau)=1+\frac{1}{8}\left(\frac{\eta\left(\frac{\tau}{4}\right)}{\eta(\tau)}\right)^{8}$	$\Gamma^{0}(4)$	$0,2, i \infty$
$N_{f}=1$	$u^{3}=1$	$3 I_{1}$	I_{3}^{*}	$u^{3}=\frac{2 E_{4}(\tau)^{\frac{3}{2}}}{E_{4}(\tau)^{\frac{3}{2}}+E_{6}(\tau)}$	$\Gamma_{N_{f}=1}$	$0,1,2, i \infty$
$N_{f}=2$	$+1,-1$	I_{2}, I_{2}	I_{2}^{*}	$u(\tau)=1+\frac{1}{8}\left(\frac{\eta\left(\frac{\tau}{2}\right)}{\eta(2 \tau)}\right)^{8}$	$\Gamma(2)$	$0,1, i \infty$
$N_{f}=3$	0,1	I_{4}, I_{1}	I_{1}^{*}	$u(\tau)=-\frac{1}{16}\left(\frac{\eta(\tau)}{\eta(4 \tau)}\right)^{8}$	$\Gamma_{0}(4)$	$0,-\frac{1}{2}, i \infty$

Note: Massless $N_{f}=1$ is not modular.

Modular curves for SQCD

Example: pure $S U(2)$. Modular curve for $\Gamma^{0}(4)$. Two cusps of width 1.

$$
u(\tau)=\frac{1}{8}\left(q^{-\frac{1}{4}}+20 q^{\frac{1}{4}}-62 q^{\frac{3}{4}}+216 q^{\frac{5}{4}}-641 q^{\frac{7}{4}}+1636 q^{\frac{9}{4}}+\mathcal{O}\left(q^{\frac{11}{4}}\right)\right)
$$

Figure 4: Fundamental domains for $\Gamma^{0}(4)$. Figure (a) shows a standard choice, with width one cusps at $\tau=0$ and 2, while in figure (b) the cusp at $\tau= \pm 2$ is split, with the branch cut of the periods indicated by the dashed line.

Associated monodromies:

$$
\mathbb{M}_{u=1}=S T S^{-1}, \quad \mathbb{M}_{u=-1}=\left(T^{2} S\right) T\left(T^{2} S\right)^{-1}, \quad \mathbb{M}_{\infty}=P T^{4}
$$

Modular curves for SQCD

Another example: $S U(2), N_{f}=1$.

$\left\{F_{v}\right\}$	m_{1}	\mathfrak{g}_{F}	$\operatorname{rk}(\Phi)$	$\Phi_{\text {tor }}$
$I_{3}^{*}, 3 I_{1}$	m_{1}	$\mathfrak{u}(1)$	1	-
$I_{3}^{*}, I I, I_{1}$	$m_{1}^{3}=\frac{27}{16} \Lambda^{3}$	$\mathfrak{u}(1)$	1	-

Two configurations: massless one is not modular. The other is modular for $\Gamma=\Gamma^{0}(3)$:

$$
u(\tau)=-\frac{5}{3}-\frac{1}{9}\left(\frac{\eta\left(\frac{\tau}{3}\right)}{\eta(\tau)}\right)^{12}
$$

Note the AD points H_{0} as an elliptic point:

Figure 7: Fundamental domain for $\Gamma^{0}(3)$ corresponding to the configuration $\left(I_{3}^{*}, I_{1}, I I\right)$ on the CB of the $4 \mathrm{~d} S U(2), N_{f}=1$ theory. The marked point $\tau=2+e^{2 i \pi / 3}$ is the elliptic point of the congruence subgroup $\Gamma^{0}(3)$.

The U-plane of the $E_{n} 5 \mathrm{~d}$ SCFTs

Geometric engineering in IIA and M-theory

Consider a Type IIA string theory on $\mathbb{R}^{4} \times \tilde{\mathbf{X}}$, with \mathbf{X} a Calabi-Yau manifold. The low-energy theory is a $4 d \mathcal{N}=2$ supergravity theory. If \mathbf{X} is non-compact, we have a $4 d$ $\mathcal{N}=2$ QFT in the infrared.

Plot twist: the low-energy QFT associated to $\tilde{\mathbf{X}}$ itself is 'secretly' five-dimensional. [Witten, 1995; Nekrasov, 1996]. Indeed, we may consider M-theory on $\mathbb{R}^{5} \times \tilde{\mathbf{X}}$. If we take a smooth $\tilde{\mathbf{X}}$ which is a crepant resolution of a canonical singularity \mathbf{X} :

$$
\tilde{\mathbf{X}} \rightarrow \mathbf{X}
$$

we are on the Coulomb branch of a 5d SCFT $\mathcal{T}_{\mathrm{X}}^{5 \mathrm{~d}}$.
We then have:

$$
\begin{array}{rll}
\mathcal{T}_{\mathbf{X}}^{5 \mathrm{~d}} \text { on } \mathbb{R}^{4} \times S^{1} & \leftrightarrow & \text { M-theory on } \mathbb{R}^{4} \times S^{1} \times \mathbf{X} \\
& \leftrightarrow & \text { IIA string theory on } \mathbb{R}^{4} \times \mathbf{X}
\end{array}
$$

This gives us a 4d $\mathcal{N}=2$ supersymmetric Kaluza-Klein (KK) field theory:

$$
D_{S^{1}} \mathcal{T}_{\mathrm{X}}^{5 \mathrm{~d}} \text { on } \mathbb{R}^{4} \cong \mathcal{T}_{\mathrm{X}}^{5 \mathrm{~d}} \text { on } \mathbb{R}^{4} \times S_{\beta}^{1}
$$

Geometric engineering in IIA and M-theory

Let us focus on the simplest example, of rank one:

$$
\tilde{\mathbf{X}}=\operatorname{Tot}(\mathcal{K} \rightarrow S), \quad S=\mathbb{F}_{0} \text { or } d P_{n}(n \leq 8)
$$

Singularity X: blow-down the zero section S, which is a Fano surface.
Intersection form $H_{2}(S, \mathbb{Z}) \times H_{2}(S, \mathbb{Z}) \rightarrow \mathbb{Z}$ can be written as:

$$
\left(\begin{array}{cc}
9-n & 0 \\
0 & -A_{I J}^{E_{n}}
\end{array}\right), \quad I, J=1, \cdots, n, \quad 9-n=\operatorname{deg}(S)=\mathcal{K} \cdot \mathcal{K}
$$

$\Rightarrow \quad \mathrm{M} 2$-brane particles on $C B$ form representations of $E_{n}=\mathfrak{e}_{n}$ algebra.

Note: We may also consider $d P_{9}$ (a RES.) The theory is then secretly six-dimensional. That is the E-string theory (a $6 \mathrm{~d} \mathcal{N}=(1,0) \mathrm{SCFT}$) on $\mathbb{R}^{4} \times T^{2}$.

E_{n} theories from del Pezzos

These SCFTs are all related by RG flows triggered by massive deformations:

The 5d gauge theory limit

- These 10 rank-one SCFTs were first discovered by Seiberg as UV fixed points of 5d $\mathcal{N}=1$ gauge theories.
- Recall that 5d gauge theories are IR-free effective theories. The perturbative gauge-theory description is valid for RG scales:

$$
\mu \ll m_{0} \equiv \frac{1}{g_{5 \mathrm{~d}}^{2}}
$$

- $\mathcal{T}_{E_{n}}^{5 \mathrm{~d}}$ admits a mass deformation to a $5 \mathrm{~d} \mathcal{N}=1$ gauge theory in the IR:

$$
E \ll m_{0}=\frac{1}{g_{5 d}^{2}} \quad: \quad 5 \mathrm{~d} \mathcal{N}=1 S U(2) \text { with } N_{f}=n-1 \text { fundamentals. }
$$

This mass deformation breaks the flavor algebra as:

$$
E_{n} \quad \rightarrow \quad \mathfrak{s o}\left(2 N_{f}\right) \oplus \mathfrak{u}(1)
$$

The U-plane of $D_{S^{1}} \mathcal{T}_{\mathbf{X}}^{5 \mathrm{~d}}$

As a first approximation, we can then think of our E_{n} theories as $5 \mathrm{~d} S U(2)$ gauge theories. The low-energy $U(1)$ scalar is:

$$
a=i\left(\varphi+i A_{5}\right), \quad e^{2 \pi i A_{5}} \equiv e^{\int_{S^{1}} A}
$$

and the gauge-invariant order parameter is:

$$
U=\langle W\rangle=e^{2 \pi i a}+e^{-2 \pi i a}+\cdots
$$

Here W is a supersymmetric Wilson line in 5d, wrapped along the S^{1}.
Similarly, the complexified mass parameters are flavor Wilson lines:

$$
M_{I}=e^{2 \pi i \mu_{I}}=e^{-\beta m_{I}+i \vartheta_{I}}
$$

The U-plane of $D_{S^{1}} \mathcal{T}_{\mathbf{X}}^{5 \mathrm{~d}}$

At fixed M_{I}, the Coulomb branch is one-dimensional, with local coordinate $U \in \mathbb{C}$. This is the U-plane.

As in 'ordinary' $4 \mathrm{~d} \mathcal{N}=2$ theories, the low-energy physics is fully determined by some Seiberg-Witten geometry. The E_{n} curves were derived in [Ganor, Morrison, Seiberg, 1996; Eguchi, Sakai, 2002].

The U-plane from local mirror symmetry

The SW solution is essentially local mirror symmetry:

$$
\begin{array}{lll}
\mathrm{CB} \text { of } D_{S^{1}} \mathcal{T}_{\mathrm{X}}^{5 \mathrm{~d}} & \longleftrightarrow & \text { IIA string theory on } \mathbb{R}^{4} \times \tilde{\mathbf{X}} \\
& \longleftrightarrow & \text { IIB string theory on } \mathbb{R}^{4} \times \hat{\mathbf{Y}}
\end{array}
$$

We have the local mirror symmetry between smooth threefolds:

$$
\tilde{\mathbf{X}} \quad \leftrightarrow \quad \hat{\mathbf{Y}}, \quad D(\tilde{\mathbf{X}}) \quad \leftrightarrow \quad \operatorname{Fuk}(\hat{\mathbf{Y}})
$$

In particular:

- U, M_{I} are complex structure parameters of $\widehat{\mathbf{Y}}$.
- a, μ_{I} are Kähler parameters of $\tilde{\mathbf{X}}$.
- The exact expression:

$$
a(U)=\frac{1}{2 \pi i} \log \frac{1}{U}+\sum_{k} c_{k} U^{k}
$$

is the mirror map.

The fiber at infinity

Consider the E_{n} theory. One can determine the large volume monodromy from the semi-classical periods.

Let us give a more "5d QFT" derivation: Take a limit where the $5 \mathrm{~d} S U(2), N_{f}=n-1$ gauge-theory description is valid. At one-loop, the prepotential of the theory on $\mathbb{R}^{4} \times S^{1}$ reads:

$$
\mathcal{F}=\quad \mu_{0} a^{2}+\frac{2}{(2 \pi i)^{3}} \operatorname{Li}_{3}\left(e^{4 \pi i a}\right)-\frac{1}{(2 \pi i)^{3}} \sum_{a=1}^{n-1} \sum_{ \pm} \operatorname{Li}_{3}\left(e^{2 \pi i\left(\pm a+\mu_{a}\right)}\right)
$$

and $a_{D}=\frac{\partial \mathcal{F}}{\partial a}$. The large volume monodromy is:

$$
a_{D} \rightarrow a_{D}+(9-n) a+\mu_{0}-\sum_{a=1}^{n-1} \mu_{a}, \quad a \rightarrow a+1
$$

We thus have:

$$
\mathbb{M}_{\infty}=T^{9-n}=\left(\begin{array}{cc}
1 & 9-n \\
0 & 1
\end{array}\right)
$$

This determines the fiber at infinity, $F_{\infty}=I_{9-n}$, as anticipated.

Rational elliptic surfaces and generic masses:

$\left(N_{8}+4\right) I_{1}$
SD SUR), N_{s}
($N_{1}=-1, \ldots 7$)

$\left(\mathrm{N}_{\mathrm{g}}+2\right) I_{1}$
MD $50(2), N_{\rho}$
($\left.N_{\rho}=0, \ldots 3\right)$

The I_{k} fiber has monodromy conjugate to T^{k}. The bulk I_{1} corresponds to a single BPS particle becoming massless:

$$
M_{*}^{(m, q)}=B^{-1} T B=\left(\begin{array}{cc}
1+m q & q^{2} \\
-m^{2} & 1-m q
\end{array}\right)
$$

The massless curves

Consider now $M_{I}=1$. One finds:

E_{8}	$:$	$I I^{*} \oplus I_{1}$	$\Phi=0$
E_{7}	$:$	$I I I^{*} \oplus I_{1}$	$\Phi=\mathbb{Z}_{2}$
E_{6}	$:$	$I V^{*} \oplus I_{1}$	$\Phi=\mathbb{Z}_{3}$
E_{5}	$:$	$I_{1}^{*} \oplus I_{1}$	$\Phi=\mathbb{Z}_{4}$
E_{4}	$:$	$I_{5} \oplus I_{1} \oplus I_{1}$	$\Phi=\mathbb{Z}_{5}$
E_{3}	$:$	$I_{3} \oplus I_{2} \oplus I_{1}$	$\Phi=\mathbb{Z}_{6}$
E_{2}	$:$	$I_{2} \oplus I_{1} \oplus I_{1} \oplus I_{1}$	$\Phi=\mathbb{Z}$
E_{1}	$:$	$I_{2} \oplus I_{1} \oplus I_{1}$	$\Phi=\mathbb{Z}_{2}$
\tilde{E}_{1}	$:$	$I_{1} \oplus I_{1} \oplus I_{1} \oplus I_{1}$	$\Phi=\mathbb{Z}$
E_{0}	$:$	$I_{1} \oplus I_{1} \oplus I_{1}$	$\Phi=\mathbb{Z}_{3}$

in agreement with old 'classic' results.
[Ganor, Morrison, Seiberg, 1996]
\diamond This reproduce the E_{n} flavor symmetry, including abelian factors.
\diamond The 4d LEEFT is IR free for $n<6$

MW group and global symmetry

The general prescription for the global symmetry works here too. We find:

$$
G_{F}=\mathrm{E}_{n} / Z\left(\mathrm{E}_{n}\right)
$$

for the massless theories with semi-simple symmetry group.

- This agrees with the 5d result of [Apruzzi, Bhardwaj, Oh, Schafer-Nameki, 2021], which found G_{F} centerless using directly the M-theory geometry.
- The fiber $F_{\infty}=I_{8}$ does not determine the SQFT uniquely. Two distinct choices for $\mathcal{Z}^{[1]}$, either \mathbb{Z}_{2} or trivial. This gives E_{1} or \tilde{E}_{1}.
- The case E_{1} is special, with $\Phi=\mathbb{Z}_{4}$ and $\mathcal{Z}^{[1]}=\mathbb{Z}_{2}$, with:

$$
\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \rightarrow \mathscr{F}=\mathbb{Z}_{2}
$$

so that $G_{F}=S O(3)$.

- All other theories have $\mathcal{Z}^{[1]}=0$, and thus $\Phi_{\text {tor }}=\mathscr{F}$.

RG flows to 4d

Two types of flows:

- "zooming in":

Here we just decouple the KK scale.

- "geometric engineering limit":
We decouple the KK scale and the instanton particles.

Modularity of the U-plane
In many interesting special limits, the U-plane is a modular curve:

$$
\overline{\mathcal{B}} \cong \mathbb{H} / \Gamma, \quad \Gamma \subset S L(2, \mathbb{Z})
$$

This means, in particular, that the mirror map is a modular function:

$$
a=a(U) \quad \leftrightarrow \quad U=U(\tau)
$$

Example: the massless curves:

E_{7}	$:$	$I I I^{*} \oplus I_{1}$	$:$	$\Gamma^{0}(2)$
E_{6}	$:$	$I V^{*} \oplus I_{1}$	$:$	$\Gamma^{0}(3)$
E_{5}	$:$	$I_{1}^{*} \oplus I_{1}$	$:$	$\Gamma^{0}(4)$
E_{4}	$:$	$I_{5} \oplus I_{1} \oplus I_{1}$	$:$	$\Gamma^{1}(5)$
E_{3}	$:$	$I_{3} \oplus I_{2} \oplus I_{1}$	$:$	$\Gamma^{0}(6)$
E_{1}	$:$	$I_{2} \oplus I_{1} \oplus I_{1}$	$:$	$\Gamma^{0}(8)$
E_{0}	$:$	$I_{1} \oplus I_{1} \oplus I_{1}$	$:$	$\Gamma^{0}(9)$

The massless E_{8}, E_{2} and \tilde{E}_{1} are not modular.

Example: the massless E_{1} theory

This is " 5 d pure $S U(2)_{0}$ at infinite coupling."
The CB of the massless is a modular curve for the congruence subgroup $\Gamma^{0}(8)$:

Singularities and monodromies:

$$
M_{(-2)}=S T S^{-1}, \quad M_{(0)}=\left(T^{2} S\right) T^{2}\left(T^{2} S\right)^{-1}, \quad M_{(-2)}=\left(T^{4} S\right) T\left(T^{4} S\right)^{-1}
$$

- At $U=-2$, the monopole $(1,0)$ is massless, $a_{D} \rightarrow 0$. "Conifold point."
- At $U=0$, two dyons $(-1,2)$ are massless.
- At $U=2$, the dyon $(1,-4)$ is massless.

5d BPS quivers

BPS quivers of 4d KK theories

Given any $4 \mathrm{~d} \mathcal{N}=2$ field theory \mathcal{T}, are hard question is to compute the BPS spectrum \mathscr{S}_{u} at $u \in \mathcal{B}$.

In principle, one can proceed in two steps:

- Identify the BPS category $\mathscr{T}_{\mathcal{T}}^{\text {BPS }}$ of \mathcal{T}.
- Identify the stable objects in $\mathscr{T}_{\mathcal{T}}^{\text {BPS }}$.

In physics language, it's a F-term/D-term dichotomy.
For our 5d theories on a circle,

$$
\mathcal{T}=D_{S^{1}} \mathcal{T}_{\mathbf{X}}^{5 \mathrm{~d}}
$$

the BPS states are D0/D2/D4 bound states in IIA.

The BPS category of the KK theory is the derived category of coherent sheaves on the resolved singularity $\tilde{\mathbf{X}}$:

$$
\mathscr{T}_{D_{S^{1}} \mathcal{T}_{\mathbf{X}}^{5 \mathrm{~d}}}^{\mathrm{BPS}}=\mathrm{D}^{b}(\operatorname{coh} \tilde{\mathbf{X}})
$$

Π-stables branes are the stables objects that give us the BPS spectrum. [Douglas, Fiol, Romelsberger, 2000]. They are (essentially) counted by the DT invariants of $\tilde{\mathbf{X}}$. (See [Duan, Ghim, Yi, 2020] for an important caveat.)

BPS quivers of 4d KK theories

There often exists a quiver description of the BPS states. [Alim, Cecotti, Cordova, Espahbodi, Rastogi, Vafa, 2011]
Let \mathcal{A}_{Q} be the Jacobian algebra of (Q, W). We then have:

- $\mathscr{T}_{\mathcal{T}}{ }^{\mathrm{BPS}}=\mathrm{D}\left(\mathcal{A}_{Q}\right.$-mod $)$.
- The BPS states are given by (quantising the moduli spaces of) the θ-stable representations.

For the KK theories of interest, we call this the the 5d BPS quiver. In the physics literature, it is best known as the fractional-brane quiver of the canonical singularity \mathbf{X} (if \mathbf{X} admits a crepant resolution), and as non-commutative crepand resolution (NCCR) of \mathbf{X} in the maths literature. One expects:

$$
\mathrm{D}^{b}(\operatorname{coh} \tilde{\mathbf{X}}) \cong \mathrm{D}\left(\mathcal{A}_{Q^{-}}-\bmod \right)
$$

Various techniques exists to extract the quiver (and superpotential) (Q, W) from the B-model on $\tilde{\mathbf{X}}$ - see e.g. [CC, Del Zotto, 2019].

Here, we would like to directly derive Q from the type IIB mirror - i.e. from the SW geometry.

5d BPS quivers from the U-plane: simple prescription

We focus again on rank-one theories.
Basic idea: consider a CB configuration with only I_{k} singularities at $u_{*, i}$.
Then, motivated by the IIB and F-theory picture, we:

- conjecture that the BPS spectrum consists of charges (m, q) that are generated by the dyons $\gamma_{i}=\left(m_{i}, q_{i}\right)$ that become massless at $u_{*, i}$;
- to each I_{k}, we associate k quiver nodes;
- the number of arrows between nodes, $(i) \rightarrow(j)$, is given by the Dirac pairing:

$$
n_{i j}=\left\langle\gamma_{i}, \gamma_{j}\right\rangle=\operatorname{det}\left(\begin{array}{ll}
m_{i} & q_{i} \\
m_{j} & q_{j}
\end{array}\right)
$$

Comments:

- This pedestrian method does not gives us W.
- In simple cases, we can prove that this quiver description exists by computing the central charges Z_{γ} near the origin of the CB.

Example: the massless E_{1} theory

Consider the E_{1} theory. Recall that we have the light dyons:

$$
(1,0), \quad(-1,2) \times 2, \quad(1,-4) .
$$

This gives the quiver:

Indeed, the E_{1} geometry is the well-known local $\mathbb{F}_{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, and the quiver above is a known 'toric' quiver for this geometry. It is valid at $U=0$ on the massless CB.

Modular curves and quiver points
In practise, we use modularity to identify the light dyons. We can classify all modular CB configurations for any of the rank-one theories.

For instance, for $D_{S^{1}} E_{8}$ and restricting to congruence subgroups (for simplicity):

$\left\{F_{v}\right\}$	$\operatorname{rk}(\Phi)$	$\Phi_{\text {tor }}$	\mathfrak{g}_{F}	$\Gamma \in \operatorname{PSL}(2, \mathbb{Z})$
$I_{1}, I_{2}, I I I^{*}$	0	\mathbb{Z}_{2}	$E_{7} \oplus A_{1}$	$\Gamma_{0}(2)$
$I_{1}, I_{3}, I V^{*}$	0	\mathbb{Z}_{3}	$E_{6} \oplus A_{2}$	$\Gamma_{0}(3)$
$2 I_{1}, I_{4}^{*}$	0	\mathbb{Z}_{2}	D_{8}	$\Gamma_{0}(4)$
I_{1}, I_{4}, I_{1}^{*}	0	\mathbb{Z}_{4}	$D_{5} \oplus A_{3}$	$\Gamma_{0}(4)$
$2 I_{1}, 2 I_{5}$	0	\mathbb{Z}_{5}	$A_{4} \oplus A_{4}$	$\Gamma_{1}(5)$
$I_{1}, I_{6}, I_{3}, I_{2}$	0	\mathbb{Z}_{6}	$A_{5} \oplus A_{2} \oplus A_{1}$	$\Gamma_{0}(6)$
$2 I_{1}, I_{8}, I_{2}$	0	\mathbb{Z}_{4}	$A_{7} \oplus A_{1}$	$\Gamma_{0}(8)$
$3 I_{1}, I_{9}$	0	\mathbb{Z}_{3}	A_{8}	$\Gamma_{0}(9)$
$I_{1}, I I I^{*}, I I$	1	-	E_{7}	$P L S(2, \mathbb{Z})$
$I_{1}, I I I, I V^{*}$	1	-	$E_{6} \oplus A_{1}$	$P L S(2, \mathbb{Z})$
$I_{1}, I_{2}^{*}, I I I$	1	\mathbb{Z}_{2}	$D_{6} \oplus A_{1}$	$\Gamma_{0}(2)$
$I_{1}, I_{3}^{*}, I I$	1	-	D_{7}	$\Gamma_{0}(3)$
$I_{1}, I_{5}, 2 I I I$	2	-	$A_{4} \oplus 2 A_{1}$	$\Gamma_{0}(5)$
$I_{1}, I_{7}, 2 I I$	2	-	A_{6}	$\Gamma_{0}(7)$

Modular curves and quiver points

One can then identify the light particles and, in favourable cases, the 5d BPS quiver.
Example: The $D_{S^{1}} E_{8} \mathrm{CB}$ configuration $\mathcal{S}=\left(I_{1}, I_{6}, I_{3}, I_{2}\right)$, with:

$$
\begin{gathered}
\mathscr{S}: \quad I_{6}: 6(1,0), \quad I_{2}: 2(-3,1), \quad I_{3}: 3(2,-1), \\
\mathcal{E}_{\gamma_{1,2,3,4,5,6}=(1,0)} \longrightarrow \mathcal{E}_{\gamma_{7,8}=(-3,1)} \\
\mathcal{E}_{\gamma_{9,10,11}=(2,-1)}
\end{gathered}
$$

This is a correct 3-blocks quiver for $d P_{8}$, which can be obtained from B-branes [Wijnholt, 2002; Karpov, Nogin, 1997]. Here, we derived it from the mirror.

Note: By removing γ_{1}, we get a BPS quiver for the $4 \mathrm{~d} E_{8} \mathrm{MN}$ theory.

Summary and outlook

Summary:

\diamond We revisited a general approach to rank-one $4 \mathrm{~d} \mathcal{N}=2$ SQFT in terms of rational elliptic surfaces.
\diamond We pointed out that the Persson classification of RES gives classification of CB configurations.
\diamond We determined the flavour symmetry group directly from the SW geometry.
\diamond We discussed the Coulomb branch physics of 5d SCFTs on $\mathbb{R}^{4} \times S^{1}$.
\diamond We studied global properties of the U-plane, such as modularity.
Outlook:
\diamond We initiated a study of quiver points on the U-plane. More systematic analysis needed.
\diamond These elementary considerations are fundamental to a better understanding of partition functions of 5d SCFTs on five-manifolds. Work in progress.

