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What is TTbar?

near critical short-range lattice systems have a scaling limit
as the lattice spacing→ 0 which is a local euclidean field
theory

observables like magnetization, energy density, etc.
correspond to local fields whose correlation functions have
power law behavior |x1 − x2|−2∆ on scales� correlation
length, described by a conformal field theory (CFT)

one of these fields is the stress-energy tensor Tij(x)

response of the free energy to an infinitesimal change in
the metric
conserved Noether current of translational symmetry
dimension ∆ = d



from this we can form scalar bilinears

TijTij , TiiTjj (= 0 at critical point)

dominant irrelevant terms in many 2d lattice models

Zamolodchikov (2004) showed that in 2d the combination
“TTbar”

λ

∫
(T11T22−T12T21)d2x = λ

∫
(det T )d2x = 1

2λ

∫
εikεjlTijTkld2x

is special, in that many features of the deformed theory are
finite and solvable in terms of the original theory

example of a non-local theory with a UV length scale ∝
√
λ

in holography λ < 0 corresponds to ’going into the bulk’

in massive theories it gives particles a hardcore width
∼ λm



TTbar peculiarities
in 1+1 dimensions, if space = [0,R], eigenvalues of
hamiltonian obey

∂λEλ
n (R) = Eλ

n (R) ∂REλ
n (R)

if undeformed theory is critical (a CFT), E0
n (R) = Cn/R,

Eλ
n (R) =

R
2λ

(√
1 +

4λCn

R2 − 1

)

E0
n (R) = Eλ

n (R)
(

1 + λEλ
n (R)/R

)
where ρ(E0) ∼ ect.

√
E0

λ > 0: fast growth in dos; maximum temperature
λ < 0: maximum in dos; finite entropy density at infinite
temperature

one aim of this work is to explain these features in a
different physical setting



Magnetoelasticity

coupling of magnetic degrees of freedom to displacement
field u(x) of elastic solid

eg magnetostriction [Joule 1842]

other ‘matter’ internal degrees of freedom can be similarly
coupled as stress×strain:

∫
T total

ij εij d2x where strain εij = 1
2(∂iuj + ∂jui)

T total
ij = T elastic

ij +
(
T matter

ij + T coupling
ij

)
where T elastic

ij = Λij;klεkl = 2µ εij + λ̄ δij εkk (Hooke’s law)

Lamé constants (µ, λ̄): normally µ > 0, λ̄+ µ > 0



Z =

∫
d [matter]

∫
dεij e−T matter·ε−ε·Λ·ε

integrate out strain field ε

ε = −1
2Λ−1 · T matter + gaussian fluctuations

→ e
1
4T matter · Λ−1 · T matter

to get TTbarite we need εij = −λεikεjlTkl

ε11 = −λT22 , ε22 = −λT11 , ε12 = λT12

infinite Poisson’s ratio



TTbarite

O O

Normal material
ν>0 ν=οο λ>0

more interesting to consider a protocol where initially the
sample is in equilibrium with λ = 0, with the only stresses
due to finite-size Casimir-type forces, then λ is turned on
adiabatically



Why TTbar is solvable

many ways to see this, but –

under λ→ λ+ δλ, δεij = −(δλ)εikεjlT λ
kl

∂j [δuλi (x)] = −(δλ)εikεjlT λ
kl(x)

note that we use updated T λ: this is a flow not a simple
perturbation

Integrate wrt x : ∂λuλi (x) = −εik C
∫ x

X
T λ

kl(x ′)εjldx ′j

= −εik×flux Nk (X , x) of conserved current T λ
kl across [X , x ]

independent of contour C[X , x ]

for other values of Poisson’s ratio this would not happen



N

R

X

x1

x2

~Rλ
1,2 = ~x2 + ~uλ(x2)− ~x1 − ~uλ(x1)

x → x + u(x) is not a diffeomorphism: ~x is an absolute
frame of reference and u(x) is a physical field; no
requirement of general covariance

∂λRλ
i = −εikNλ

k (Cλ) = −εik × (force acting across C)k

in many cases C is macroscopic and we can choose an
ensemble where Nλ

k (Cλ) is non-fluctuating and moreover
independent of λ. Rλ then evolves linearly



Example: torus

may think of Ra,Na as ∈ R2 or ∈ C
different ensembles:

fixed strain (R1,R2) [∼canonical (volume, temperature)]
fixed stress (N1,N2) [∼(pressure, energy)]
mixed (R1,N2) [∼microcanonical (volume, energy)]

related by Laplace or Legendre transforms



Laplace transforms

Z 0(R1,R2) =

∫
e−N2.R2ρ0(R1,N2)d2N2 =

∫
C

es2.R2 ω0(R1, s2)
d2s2

(2πi)2

where ω0(R1, s2) =

∫
R1∧R′

2>0
e−s2.R′

2 Z 0(R1,R′2)dR′2

OR

Z 0(R1,R2) =

∫
C

∫
C

es1.R1+s2.R2 Ω0(s1, s2)
d2s1

(2πi)2
d2s2

(2πi)2

where Ω0(s1, s2) =

∫
R′

1∧R′
2>0

e−s1.R′
1−s2.R′

2 Z 0(R′1,R
′
2)d2R′1d2R′2



TTbar evolution

∂λRλ
ai = −εikεabNbk

However, since there is a marked point where u(X ) = 0, we
should be considering Zλ

X (R1,R2) = Zλ(R1,R2)/(R1 ∧ R2).

In a CFT,

ZX (R1,R2) = |R1|−2z0(τ = R2/R1) so z0(−1/τ) = |τ |2z0(τ)

z0 transforms like the absolute value of a modular form of
weight 2.



In the mixed (R1,N2) ensemble, Rλ
1 = R0

1 − λiN2, so

Zλ
X (R1,R2) =

∫
C

es.R2 ω0(R1 − λis, s)
d2s

(2πi)2

where s.R2 = Re (sR∗2) and

ω0(R1, s) =

∫
R1∧R′

2>0
e−s.R′

2Z 0
X (R1,R′2)d2R′2

=

∫
R1∧R′

2>0
e−s.R′

2 |R1|−2z0(τ ′ = R′2/R1)d2R′2 =

∫
H

e−s.τ ′R1z0(τ ′)d2τ ′



Zλ
X (R1,R2) =

∫
C

es.τR1

∫
H

e−s.τ ′(R1−λis)z0(τ ′)d2τ ′
d2s

(2πi)2

Setting α = λ/(area) and rescaling s, Zλ
X (R1,R2) = |R1|−2zα(τ)

where

zα(τ) = (1/4πα)

∫
H

e−|τ−τ
′|2/4ατ2τ

′
2(τ ′2/τ2)z0(τ ′)

d2τ ′

τ ′2
2

[Dubovsky et al, 2018; Datta & Jiang, 2020]



The kernel e−|τ−τ
′|2/4ατ2τ

′
2(d2τ ′/τ ′2

2) is invariant under
(τ, τ ′)→ (−1/τ,−1/τ ′), so that

zα(−1/τ) = |τ |2zα(τ) , and zα(τ + 1) = zα(τ)

so Zλ(R1,R2) is SL(2,Z) invariant as expected, as long as the
integrals converge.

Since z0(τ ′) ∼ eπc/6τ ′2 as τ ′2 → 0, this requires τ2/4α > πc/6.
This corresponds to the ‘Hagedorn’ maximum temperature
∼ τ−1

2 . Similarly 1/4ατ2 > πc/6 as τ ′2 →∞.



Zλ
X (R1,R2) =

∫
C

es.τR1

∫
H

e−s.τ ′(R1−λis)z0(τ ′)d2τ ′
d2s

(2πi)2

If z0(τ ′) is a sum of terms of the form (1/τ ′2
2)e−2π∆τ ′2+2πipτ ′1 ,

doing the τ ′ integration sets s1 = 2πp gives
log(s2 − s−) + log(s2 − s+) where

s±2 = (1/2α)
(
1±

√
1 + 4π∆α + 4π2p2α2

)
and pulling back the contour to wrap around the branch cut at
s2 = s−, we recover the deformed Zamolodchikov spectrum for
states with p 6= 0.

[Remarks about α < 0]



A mathematical diversion
These results extend straightforwardly to 1-point functions on
the torus

〈Φ(X )〉λ = |R1|−∆Φ fα(τ)

In fact we can play this game with any modular or Jacobi form:
if F 0(τ) is such a form of weight k so that
|F 0(−1/τ)|2 = |τ |2k |F 0(τ)|2, and

|F 0(τ)|2 =
∑
n≥0

∑
p

an,pe−2π(∆+n)τ2+2πipτ1

then∑
n≥0

∑
p

an,p

(1 +
√

1 + 4π∆ατ2 + 4π2p2α2τ2
2 )2−2k√

1 + 4π∆ατ2 + 4π2p2α2τ2
2

×e−(1/2α)
(√

1+4π∆ατ2+4π2p2α2τ2
2−1
)

+2πipτ1

has the same modular properties.



Legendre transforms

Legendre is a steepest descent approximation to Laplace

simpler, but usually valid only in the thermodynamic limit

however, if Z 0 ∼ (· · · )c (a ‘holographic’ CFT), it is valid as
c →∞ with λc fixed

fixed (R1,R2) ensemble:

Fλ(R1,R2) = − log Zλ(R1,R2) , Nλ
a = ∂RaFλ

fixed (N1,N2) ensemble: solve for (R1,R2) in terms of
(N1,N2)

Gλ(N1,N2) ≡ Fλ(R1,R2)−R1.N1−R2.N2 , Rλ
a = −∂NaGλ



Then
Gλ(N1,N2) = G0(N1,N2) + λN1 ∧ N2

evolution in this ensemble is simple, and invariant under
S : (N1,N2)→ (N2,−N1) and T : (N1,N2)→ (N1,N2 + N1)

however the passage F 0 → G0 → Gλ → Fλ fails if the map
(R0

1 ,R
0
2)→ (Rλ

1 ,R
λ
2 ) is singular: either

|∂Rλ
i /∂R0

j | = 0 : formation of a shock; or
area Aλ = Rλ

1 ∧ Rλ
2 → 0 : collapse of the elastic sample



Fluid analogy

∂λRλ
ai = −εabεijNbj

are the equations of motion of a 4d fluid in the Lagrangian
(particle) picture, where λ = time and velocity vai = −εabεijNbj .

Euler equations: ∂λNλ
ck = εabεijNλ

bj∂Rai N
λ
ck

generalize Zamolodchikov’s equation and may become
singular, but in the fixed strain ensemble the evolution is linear

Rλ
ai = R0

ai − λεabεijNbj(R0)

where Nbj(R0) = ∂Rbj F
0(R0) = −∂Rbj log Z 0(R0)



R0
2 � R0

1

F 0 ∼ −C(R0
2/R

0
1) (C = πc/6) so

Rλ
1 = R0

1 +λ
C
R0

1
, Rλ

2 = R0
2−λ

CR0
2

(R0
1)2

, ∂Rλ
a/∂R0

a = 1−λ C
(R0

1)2

λ > 0: sample expands in 1-direction and shrinks in
2-direction; shock forms when λ ∼ (R0

1)2; minimum value
for Rλ

1 [= maximum temperature, Hagedorn point]

λ < 0: expands in 2-direction and shrinks in 1-direction;
collapses when λ ∼ −(R0

1)2; maximum stress N1/Rλ
2 [=

maximum energy density]



λ

Rλ

Formation of a shock or caustic: particles from smaller R0

move faster and overtake those from larger R0



more generally,

∂λRλ
ai = −εabεijNbj = −εijεklT 0

jk (R0)R0
al = T 0

ij (R0)R0
aj

for a given R0, we may rotate to a basis where T jl(R0) =

diag(T 0,−T 0), so

Rλ
a1 = (1 + λT 0)R0

a1 , Rλ
a2 = (1− λT 0)R0

a2

so the torus always contracts in one direction and expands
in the orthogonal direction

area Aλ = Rλ
1 ∧ Rλ

2 = Rλ
11Rλ

22 obeys

Aλ = (1− λ2(T 0)2)A0

so for either sign of λ is always decreasing unless T 0 = 0.



in general the principal axes of T ij(R0) do not line up
simply with R0

1,2, unless the torus has more symmetry,
either

R0
1 ⊥ R0

2 (Re τ = 0, tiling of R2 by rectangles)
|R0

1 | = |R0
2 | (|τ | = 1, tiling by rhombi)

τ = i , tiling by squares, Tij ∝ δij but it is traceless so in fact it
vanishes
τ = e±iπ/3, tiling by equilateral triangles, similarly Tij

vanishes

in the last 2 cases, the torus does not evolve,
corresponding to stagnation points in the flow

these allow the construction of the general features of the
flow pattern:



Flows projected onto the principal region of the τ = iδ plane

in this region a shock forms for α = λ/(area)> α+
c (τ) > 0

where α+
c (τ)→∞ at the stagnation points

similarly collapse occurs for α < α−c (τ) < 0

this suggests that for c →∞ modular invariance in fact
holds in a wider domain α−c (τ) < α < α+

c (τ)



Simply connected domains

caveat: displacement u(x) no longer uniform in general

polygon: if no shear forces acting at edges, angles stay the
same, shape changes

λ > 0: short edges grow faster than long ones: becomes
more symmetrical; minimum size ∼ λ1/2

λ < 0: short edges shrink faster than long ones: becomes
less symmetrical, eventually collapses along narrowest axis
for rectangle Z 0 known exactly and complete analysis
possible; results similar to torus

disc:
expands as λ ↑: minimum radius ∼ λ1/2; at fixed λ > 0 the
free energy Fλ(R) has a singularity at this radius
for λ < 0 collapses at λ ∼ −R2

0 : remains symmetric but any
instabilities grow



Summary
TTbar deformation of a 2d euclidean field theory may be understood as
a coupling to an elastic medium, where the displacement u(x) is a
physical field rather than a coordinate change

medium has infinite Poisson’s ratio, which gives it unusual properties

evolution is linear in the fixed stress ensemble, where the equations are
those of simple fluid flow, but known results at fixed strain can be
derived

for λ > 0, Hagedorn-type singularities at fixed strain correspond to
formation of shocks in the fluid

for λ < 0, finite entropy density infinite temperature corresponds to
collapse of the sample

for large c a simpler thermodynamic treatment is possible

modular invariance is explicit in the fixed stress ensemble, and true in a
restricted sense but more difficult to show at fixed strain

reproduces known results for the torus, new ones for other domains

similar methods apply to TTbar deformed modular forms, suggesting
new mathematics


