Superconformal Index and Gravitational Path Integral

Francesco Benini

SISSA (Trieste)

Shing-Tung Yau Center at Southeast University 20 April 2022

in collaboration with O. Aharony, E. Colombo, O. Mamroud,

P. Milan, G. Rizi, S. Soltani, Z. Zhang, A. Zaffaroni

Quantum Gravity

Quantum Gravity in asymptotically-AdS spacetime

CONSISTENT AND NON-PERTURBATIVE DIFINITION OF QUANTUM GRAVITY

Semiclassical Regime for Gravity

strongly coupled

Take advantage of modern non-perturbative methods

Quantum Gravity from Field Theory

compute SUSY observables & partition functions exactly

Black holes & Entropy

- Quantum corrections expected to play an important role
- Euclidean observables e.g., indices capture Lorentzian physics

$$S_{\mathsf{BH}} = rac{c^3}{G_N \hbar} rac{\mathsf{Area}}{4}$$
 [Bekenstein 72, 73, 74; Hawking 74, 75]

Black hole = Ensemble of states in quantum gravity = AdS/CFT Ensemble of states in boundary QFT

 $S_{\rm micro} = \log N_{\rm micro} = \frac{{\rm Area}}{4\,G_N} \ + \ {\rm perturbative} \ \& \ {\rm non-perturbative} \ {\rm corrections}$

Black holes in AdS

 String theory reproduces the Bekenstein-Hawking entropy of BPS black holes in asymptotically-flat spacetimes

Since AdS/CFT grants us a fully non-perturbative definition of Quantum Gravity, it is interesting to study the black hole entropy in AdS

★ Strategy that proved to be effective:

[FB, Hristov, Zaffaroni 15]

Extract BPS black hole entropy in AdS from SUSY partition functions of boundary QFT at large ${\cal N}$

Beyond Bekestein-Hawking

Saddle-point approximation is subtle: (e.g., 1-dim integrals)

- Complex saddles play important role
- $\bullet\,$ Not all of them contribute \to steepest descent & Lefschetz thimbles

Does something similar happen in gravity?

- ★ This talk: analyze charged rotating BPS black holes in AdS₅
 - very detailed computations are feasible

 Strategy: count states in the boundary QFT employing a grand canonical partition function

$$\mathcal{I}(y) = \sum_{\text{states}} \ y^Q$$

Difficult problem at strong coupling \longrightarrow exploit SUSY

[Witten 98][Dijkgraaf, Maldacena, Moore, E. Verlinde 00][Maloney, Witten 07]

 Define gravitational path integral through QFT, computable with localization

 \rightsquigarrow details analysis

Setup

Type IIB string theory on $\mathrm{AdS}_5 \times S^5$

$$\longleftrightarrow$$

$$\begin{array}{l} \mbox{4d } SU(N) \\ \mathcal{N}=4 \mbox{ Super-Yang-Mills} \end{array}$$

BPS black hole solutions in AdS_5 (use 5d gauged supergravity or uplift to 10d)

[Gutowski, Reall 04; ...]

Kerr-Newman BPS black holes

Rotating & electrically-charged $\frac{1}{16}$ -BPS black holes in AdS₅ [Gutowski, Reall 04] [Chong, Cvetic, Lu, Pope 05][Kunduri, Lucietti, Reall 06]

- Angular momentum Here: J_1, J_2 Electric charges Charges for $U(1)^3 \subset SO(6)$: R_1, R_2, R_3
- SUSY (1 cplx supercharge Q)
 → BPS linear relation: 2M = 2J₁ + 2J₂ + R₁ + R₂ + R₃
 Extremal (T = 0) → non-linear relation among 5 charges → 4 parameters
 [Cabo-Bizet, Cassani, Martelli, Murthy 18; Cassani, Papini 19]
- Bekenstein-Hawking entropy (S^3 horizon):

$$S_{\mathsf{BH}} = \frac{\mathsf{Area}}{4G_N} = \pi \sqrt{R_1 R_2 + R_1 R_3 + R_2 R_3 - 2N^2 (J_1 + J_2)}$$

• Angular momenta, charges and entropy scale $\sim N^2$

Superconformal index

★ Counts (with sign) BPS states on S^3 = protected operators on flat space Index of N = 4 SYM:

$$\mathcal{I}(p,q,y_1,y_2) = \operatorname{Tr}\left(-1\right)^F e^{-\beta\{\mathcal{Q},\mathcal{Q}^{\dagger}\}} p^{J_1 + \frac{1}{2}R_3} q^{J_2 + \frac{1}{2}R_3} y_1^{\frac{1}{2}(R_1 - R_3)} y_2^{\frac{1}{2}(R_2 - R_3)}$$

Write:
$$p = e^{2\pi i \tau}$$
 $q = e^{2\pi i \sigma}$ $y_a = e^{2\pi i \Delta_a}$ $F = R_3 = 2J_1 = 2J_2 \mod 2$

 $\begin{aligned} \mathsf{SUSY} \ \Rightarrow \ \mathsf{at\ most\ 4\ independent\ fugacities} & \begin{pmatrix} \mathsf{introduce}\ \Delta_3: \\ \Delta_1 + \Delta_2 + \Delta_3 - \tau - \sigma \in \mathbb{Z} \end{pmatrix} \end{aligned}$

★ Exact integral formula

[Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk 03] [Sundborg 99][Romelsberger 05][Kinney, Maldacena, Minwalla, Raju 05] ★ The index encodes (*weighted*) degeneracies:

$$\mathcal{I} = 1 + \#y + \#y^2 + \ldots + d(Q)y^Q + \ldots$$

To extract the degeneracies:

$$d(Q) = \frac{1}{2\pi i} \oint \frac{dy}{y^{Q+1}} \,\mathcal{I}(y) = \oint d\Delta \ e^{\log \mathcal{I}(\Delta) - 2\pi i Q \Delta}$$

Assuming large degeneracies, saddle-point approximation \rightarrow Legendre transform

$$\mathsf{entropy} = \log d(Q) \ \simeq \ \log \mathcal{I}(\Delta) - 2\pi i Q \Delta \Big|_{\Delta \, = \, \mathsf{extremum}}$$

ı.

Remarks:

- We are interested in $Q \sim N^2$ in the large N limit
- One can prove that, at least at leading order in N, the index captures the full entropy [Sen 09; FB, Hristov, Zaffaroni 16]

Many approaches to large N matrix model:

- direct saddle-point approx
- Cardy limit $\tau \to 0$
- saddle-point approx for non-analytic extension
- Gross-Witten-Wadia-like expansion
- giant graviton expansion

Bethe Ansatz formulation

★ Here:

Bethe Ansatz formula for the superconformal index

Alternative formula: (set $\tau = \sigma$)

[Closset, Kim, Willett 17] [FB, Milan 18] [FB, Rizi 21]

$$\mathcal{I} = \sum_{u \,\in\, \mathfrak{M}_{\mathsf{BAE}}} \mathcal{Z}(u; \Delta, \tau, \tau) \ H(u; \Delta, \tau)^{-1}$$

 M_{BAE} are solutions to "Bethe Ansatz Equations" for rk(G) complexified holonomies [u_i] living on a complex torus T²_τ of modular parameter τ:

$$\begin{split} \mathfrak{M}_{\mathsf{BAE}}: & \qquad Q_i(u) = \prod_{a=1}^3 \prod_{j=1}^N \frac{\theta(\Delta_a - u_{ij}; \tau)}{\theta(\Delta_a + u_{ij}; \tau)} = 1 & \qquad u_{ij} = \\ u_i - u_j \neq 0 \end{split}$$

Equations are defined on T^2_τ and are invariant under $SL(2,\mathbb{Z})$

 ${f 2}$ is the same integrand as in the integral formula

• *H* is a Jacobian: $H = \det_{ij} \partial Q_i / \partial u_j$

★ *Discrete* family of exact solutions

Classified by subgroups of $\mathbb{Z}_N \times \mathbb{Z}_N$ of order NLabelled by $\{m, r\}$ with $m \cdot n = N$ and $r \in \mathbb{Z}_n$

- BASIC SOLUTION $\{1,0\}$: $u_j \sim \frac{\tau}{N} j$ • $SL(2,\mathbb{Z})$ -TRANSFORMED SOL'S e.g. • More general $SL(2,\mathbb{Z})$ orbits: m > 1 gcd(m,n,r) > 1
- ★ Continuous families of solutions (conjectured to correspond to vacua of N = 1* theory)

[Ardehali, Hong, Liu 19; Lezcano, Hong, Liu, Pando Zayas 21; FB, Rizi 21]

Contribution of BASIC SOLUTION at large N

Does the index reproduce the Bekenstein-Hawking entropy?

• Contribution of BASIC SOLUTION {1,0} at large N:

$$\lim_{N \to \infty} \mathcal{I}(\tau, \Delta_1, \Delta_2) \Big|_{\text{BASIC} \atop \text{SOLUTION}} \simeq \exp\left(-i\pi N^2 \frac{[\Delta_1]_{\tau} [\Delta_2]_{\tau} [\Delta_3]_{\tau}}{\tau^2}\right)$$

Large N limit is a *discontinuous* analytic function: Stokes phenomenon

$$[\Delta]_{\tau} \equiv \Delta + n$$
 s.t. \in STRIP

Black hole entropy

Extract Bekenstein-Hawking entropy from $\mathcal{I}\big|_{_{\rm BASIC \; SOLUTION}}$

 $\star~$ Set $~X_1=[\Delta_1]_{\tau}~~X_2=[\Delta_2]_{\tau}$. Obtain "entropy function":

$$\log \mathcal{I} = -i\pi N^2 \frac{X_1 X_2 X_3}{\tau^2} \qquad \text{with} \qquad \sum_{a=1}^3 X_a = 2\tau - 1$$

Its (constrained) Legendre transform *exactly* gives the BH black hole entropy:

$$S_{\mathsf{BH}} = \log \mathcal{I} - 2\pi i \left(\sum X_a \frac{R_a}{2} + 2\tau J \right) \Big|_{\substack{\mathsf{constrained}\\\mathsf{extremum}}}$$

Similar procedures work in other setups and dimensions, from AdS₄ to AdS₇

Bekenstein-Hawking entropy from various types of indices:

[Azzurli, Bobev, Choi, Crichigno, Fluder, Gang, Hosseini, Hristov, Hwang, Jain, Kantor, Kim, Min, Nedelin, Nian, Pando Zayas, Papageorgakis, Passias, Richmond, Suh, Uhlemann, Willett, Yaakov, Zaffaroni, ...]

Beyond the leading order ...

Expansion of the index at large N:

$$\mathcal{I} = \sum_{\text{solutions} \, \in \, \mathfrak{M}_{\mathsf{BAE}}} e^{\mathcal{O}(N^2) \, + \, \ldots}$$

It looks like a semiclassical expansion

* Large N contribution of $\{m, r\}$ solutions (with fixed m, r):

$$\log \mathcal{I}_{\{m,r\}} = -\frac{i\pi N^2}{m} \frac{[m\Delta_1]_{\check{\tau}}[m\Delta_2]_{\check{\tau}}[m\Delta_3]_{\check{\tau}}}{(m\tau+r)^2} + \log N + \mathcal{O}(1) + \sum e^{\frac{2\pi iN}{m} \frac{[m\Delta_a]_{\check{\tau}}}{\check{\tau}} + \dots} + \dots$$

where $\sum_a [m\Delta_a]_{\check{\tau}} = 2\check{\tau} - 1$ and $\check{\tau} = m\tau + r$

• Is there anything to learn from this QFT data?

Gravitational path-integral

• Superconformal index is computed by Euclidean partition function in QFT

 $\mathcal{I}_{\mathsf{SCFT}} = Z_{S^3 \times S^1} \qquad (\text{with suitable regularization})$

- Only SUSY configurations contribute to SUSY observables (localization)
- Euclidean rotation of Lorentzian BPS black hole has $\beta = \infty$ (extremal, T = 0)
 - \Rightarrow Look for <u>complex</u> Euclidean SUSY solutions

Complex Euclidean solutions

★ Consider full family of of non-SUSY black hole solutions (here 6-dim)

Generic *complex* values of parameters \Rightarrow *complex* metric and gauge fields

Impose SUSY but not extremality

Impose the boundary conditions

 As for the saddle-point approximation to one-dimensional integrals, we are let to include complex saddles in Euclidean semi-classical expansion of gravity.

[Chong, Cvetic, Lu, Pope 05] [Cvetic, Gibbons, Lu, Pope 05] [Wu 11] • Boundary metric: $ds_{\text{bdy}}^2 = \underbrace{dt_{\text{E}}^2}_{S^1} + \underbrace{d\hat{\theta}^2 + \sin^2\hat{\theta} \, d\phi^2 + \cos^2\hat{\theta} \, \psi^2}_{S^3}$

with $(t_{\rm E}, \phi, \psi) \cong (t_{\rm E} + \beta, \phi + 2\pi\tau^{\rm g} - i\beta, \psi + 2\pi\sigma^{\rm g} - i\beta)$ (from regularity at the horizon)

 ϕ, ψ defined mod 2π \Rightarrow all $\tau^{g}, \sigma^{g} + \mathbb{Z}$ give same boundary metric

• Boundary gauge field:
$$\exp\left\{-i\oint_{S^1(\mathsf{bdy})}A_a\right\} = \exp\left\{2\pi i\Delta_a^{\mathsf{g}} + \beta\right\}$$

Holonomy is gauge inv. \Rightarrow all $\Delta_a^{\mathrm{g}} + \mathbb{Z}$ give same boundary gauge bundle

★ B.C.'s only fix (constrained) complex potentials up to \mathbb{Z} shifts!

 $\tau^{g}, \sigma^{g}, \Delta^{g}_{a}$ parametrize gravity solutions SUSY: $\sum_{a} \Delta^{g}_{a} = \tau^{g} + \sigma^{g} \mp 1$

[Cabo-Bizet, Cassani, Martelli, Murthy 18]

Match with Bethe Ansatz formula?

* On-shell action of complex Euclidean SUSY solutions: (for $\tau = \sigma$)

$$\begin{split} I_{\rm grav} &= -i\pi N^2 \, \frac{\left(\Delta_1 - n_1\right) \left(\Delta_2 - n_2\right) \left(\Delta_3 - n_3\right)}{\left(\tau + n_4\right) \left(\tau + n_5\right)} \\ \text{with} \qquad \sum_a \Delta_a &= 2\tau - 1 \qquad \text{and} \quad \sum_{\alpha=1}^5 n_\alpha = 0 \qquad \qquad \rightsquigarrow \sum_{n_1, n_2, n_3, n_4} \left(\sum_{\alpha=1}^5 n_\alpha + n_\alpha\right) = 0 \end{split}$$

* Large N index contribution of m = 1 subfamily $\{1, r\}$:

$$\log \mathcal{I}_{\{m,r\}} = -i\pi N^2 \frac{[\Delta_1]_{\check{\tau}} [\Delta_2]_{\check{\tau}} [\Delta_3]_{\check{\tau}}}{(\tau+r)^2} + \dots$$

where $\sum_a [\Delta_a]_{\check{\tau}} = 2\check{\tau} - 1$ and $\check{\tau} = \tau + r \qquad \rightsquigarrow \qquad \sum_r$

• Matching contributions but ... gravity has too many solutions!

Euclidean D3-branes

Non-perturbative corrections from Euclidean SUSY D3-branes wrapped on 10d geometry at the horizon

On-shell action:

$$S_{\text{D3}} = 2\pi N \frac{\Delta_a^{\text{g}}}{\tau^{\text{g}}}$$
 or $S_{\text{D3}} = 2\pi N \frac{\Delta_a^{\text{g}}}{\sigma^{\text{g}}}$

Non-perturbative corrections: generic positive integer linear combinations of those

★ Effect of D3-brane corrections:

$$\mathcal{I} = Z_{S^3 \times S^1} \simeq e^{I_{\text{grav}}} + \sum_k e^{I_{\text{grav}}} e^{ikS_{\text{D}3}} \simeq \exp\left\{\underbrace{I_{\text{grav}}}_{\mathcal{O}(N^2)} + \sum_k \underbrace{e^{ikS_{\text{D}3}}}_{\mathcal{O}(e^{-N})}\right\}$$

Criterium to retain a complex saddle:

 $\operatorname{Im} S_{\text{D3}} > 0$ for all (SUSY) D3-brane embeddings

Violation implies "D3-brane condensation" towards some other saddle point. Expected to signal that complex saddle point does *not* contribute to integral.

 $\begin{array}{ll} \star & \text{Apply criterium} & \Rightarrow \\ (\text{for } \tau = \sigma \text{ in QFT}) & & \\ \end{array} \begin{cases} \tau^{\text{g}} = \sigma^{\text{g}} = \tau + r & \text{for any } r \\ \Delta_{a}^{\text{g}} = [\Delta_{a}]_{\tau + r} & \rightsquigarrow \sum_{r} \end{array}$

Precise match between cplx gravitational saddles and $\{1, r\}$ subfamily

Exponents of non-perturbative corrections match:

$$e^{iS_{D3}} = e^{2\pi iN} \frac{\Delta_a^g}{\tau^g} \text{ or } e^{2\pi iN} \frac{\Delta_a^g}{\sigma^g}$$
$$\log \mathcal{I}_{\{1,r\}} = \dots + \sum \# e^{2\pi iN} \frac{[\Delta_a]_{\check{\tau}}}{\check{\tau}} \dots$$

Exponentially small $\mathcal{O}(e^{-N})$ corrections when criterium is satisfied

• Interesting to compute prefactor # and compare with D3-brane quantization

Orbifold geometries: m > 1

The $\{m, r\}$ solutions with m > 1 correspond to SUSY orbifolds of 10d lift of the previous solutions

• Take a SUSY complex solution with $\widetilde{\beta} = m \beta$, $\widetilde{\tau}^{g}$, $\widetilde{\sigma}^{g}$, $\widetilde{\Delta}^{g}_{a}$ Orbifold:

$$(t_{\rm E}, \ \hat{\phi}, \ \hat{\psi}, \ \phi_a) \cong \left(t_{\rm E} + \frac{\tilde{\beta}}{m}, \ \hat{\phi} - \frac{2\pi r_1}{m}, \ \hat{\psi} - \frac{2\pi r_2}{m}, \ \phi_a - \frac{2\pi s_a}{m}\right)$$

"Stability" of Euclidean D3-branes
$$\Rightarrow$$

$$\begin{cases} \widetilde{\tau}^{g} = \widetilde{\sigma}^{g} = m\tau + r \equiv \check{\tau} \\ \widetilde{\Delta}^{g}_{a} = [m\Delta_{a}]_{\check{\tau}} \end{cases}$$

On-shell action reduced by $\frac{1}{m}$ \rightsquigarrow Match with $\log \mathcal{I}_{\{m,r\}}$

$$\log \mathcal{I}_{\{m,r\}} = -\frac{i\pi N^2}{m} \, \frac{[m\Delta_1]_{\check{\tau}}[m\Delta_2]_{\check{\tau}}[m\Delta_3]_{\check{\tau}}}{\check{\tau}^2} \, + \, \dots \, + \, \sum \# e^{\frac{2\pi iN}{m} \frac{[m\Delta_a]_{\check{\tau}}}{\check{\tau}}} \, + \, \dots$$

We expect our criterium on the sign of the imaginary part of the exponent in non-perturbative corrections to play the role of a proxy for steepest descent and Lefschetz-thimble analysis in gravity

Hints of new physics?

- In expansion of the superconformal index, there are other contributions we have not yet evaluated:
 - $\{m,r\}$ discrete solutions with different scaling with N
 - continuous families of solutions

They might capture interesting gravity solutions

★ There are *other* Euclidean SUSY D3-branes.

They destabilize even the solutions that match with the index, in certain regions of parameter space.

What does this destabilization represent? Where does it lead to?

Conclusions

Summary:

- Careful analysis of superconformal index of N = 4 SYM, using an alternative Bethe Ansatz formulation.
 Large N: each Bethe Ansatz solution represents a complex saddle point.
- One solution exactly reproduces the Bekenstein-Hawking entropy of BPS black holes in $AdS_5 \times S^5$.
- Other solutions give corrections from complex gravitational saddles. Criterium: discard complex saddles with diverging D3-instanton corrections.

Some open questions:

- Consequences for Lorentzian physics? Which phases / phase transitions?
- Can we compute corrections more precisely?
- Other Bethe Ansatz solutions? Continuous families?
- Multi-center black holes? [We have found probe branes]