Superconformal Index and Gravitational Path Integral

Francesco Benini

SISSA (Trieste)
Shing-Tung Yau Center at Southeast University 20 April 2022

in collaboration with O. Aharony, E. Colombo, O. Mamroud,
P. Milan, G. Rizi, S. Soltani, Z. Zhang, A. Zaffaroni

Quantum Gravity

> Quantum Gravity in asymptotically-AdS spacetime

CONSISTENT AND NON-PERTURBATIVE
DIFInition of Quantum Gravity

Semiclassical Regime for Gravity

* In AdS:
* \ln QFT:

Gravity is weakly coupled $\binom{$ AdS much larger }{ than Planck scale }

large
"central charge" (large N)
and close to Einstein gravity
$\binom{$ scale of higher-derivative corr.'s }{ much higher than AdS scale }

QFT is
strongly coupled
! Take advantage of modern non-perturbative methods !

Quantum Gravity from Field Theory

Localization techniques $\longrightarrow \quad$ QFT Euclidean partition functions What can we learn about semi-classical expansion of "gravitational path integral"?

Black holes \& Entropy

- Quantum corrections expected to play an important role
- Euclidean observables - e.g., indices - capture Lorentzian physics

$$
S_{\mathrm{BH}}=\frac{c^{3}}{G_{N} \hbar} \frac{\text { Area }}{4}
$$

Black hole $=$	Ensemble of states in quantum gravity$\stackrel{\text { AdS/CFT }}{=}$	Ensemble of states in boundary QFT

$S_{\text {micro }}=\log N_{\text {micro }}=\frac{\text { Area }}{4 G_{N}}+$ perturbative \& non-perturbative corrections

Black holes in AdS

* String theory reproduces the Bekenstein-Hawking entropy of BPS black holes in asymptotically-flat spacetimes

Since AdS/CFT grants us a fully non-perturbative definition of Quantum Gravity, it is interesting to study the black hole entropy in AdS

* Strategy that proved to be effective:

Extract BPS black hole entropy in AdS from
SUSY partition functions of boundary QFT at large N

Beyond Bekestein-Hawking

Saddle-point approximation is subtle: (e.g., 1-dim integrals)

- Complex saddles play important role
- Not all of them contribute \rightarrow steepest descent \& Lefschetz thimbles

Does something similar happen in gravity?

* This talk: analyze charged rotating BPS black holes in AdS_{5}
- very detailed computations are feasible
* Strategy: count states in the boundary QFT employing a grand canonical partition function

$$
\mathcal{I}(y)=\sum_{\text {states }} y^{Q}
$$

Difficult problem at strong coupling \longrightarrow exploit SUSY
\star
$\underset{\text { partition function }}{\text { QFT }} \stackrel{\text { AdS/CFT }}{=}$

Euclidean "gravitational path integral" with fixed boundary conditions

[Witten 98][Dijkgraaf, Maldacena, Moore, E. Verlinde 00][Maloney, Witten 07]

* Define gravitational path integral through QFT, computable with localization

Setup

Type IIB string theory

BPS black hole solutions in AdS_{5}
[Gutowski, Reall 04; ...]
(use 5d gauged supergravity or uplift to 10d)

Kerr-Newman BPS black holes

Rotating \& electrically-charged $\frac{1}{16}$-BPS black holes in AdS $_{5}$ [Gutowski, Reall 04]
[Chong, Cvetic, Lu, Pope 05][Kunduri, Lucietti, Reall 06]

- Angular momentum

Electric charges

Here:
J_{1}, J_{2}
Charges for $U(1)^{3} \subset S O(6): \quad R_{1}, R_{2}, R_{3}$

- SUSY (1 cplx supercharge \mathcal{Q})
\rightsquigarrow BPS linear relation: $\quad 2 M=2 J_{1}+2 J_{2}+R_{1}+R_{2}+R_{3}$
Extremal $(T=0) \rightsquigarrow$ non-linear relation among 5 charges $\rightarrow 4$ parameters
[Cabo-Bizet, Cassani, Martelli, Murthy 18; Cassani, Papini 19]
- Bekenstein-Hawking entropy (S^{3} horizon):

$$
S_{\mathrm{BH}}=\frac{\text { Area }}{4 G_{N}}=\pi \sqrt{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}-2 N^{2}\left(J_{1}+J_{2}\right)}
$$

- Angular momenta, charges and entropy scale $\sim N^{2}$

Superconformal index

* Counts (with sign) BPS states on $S^{3}=$ protected operators on flat space Index of $\mathcal{N}=4 \mathrm{SYM}$:

$$
\mathcal{I}\left(p, q, y_{1}, y_{2}\right)=\operatorname{Tr}(-1)^{F} e^{-\beta\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}} p^{J_{1}+\frac{1}{2} R_{3}} q^{J_{2}+\frac{1}{2} R_{3}} y_{1}^{\frac{1}{2}\left(R_{1}-R_{3}\right)} y_{2}^{\frac{1}{2}\left(R_{2}-R_{3}\right)}
$$

Write: $\quad p=e^{2 \pi i \tau} \quad q=e^{2 \pi i \sigma} \quad y_{a}=e^{2 \pi i \Delta_{a}} \quad F=R_{3}=2 J_{1}=2 J_{2} \bmod 2$
SUSY \Rightarrow at most 4 independent fugacities $\quad\binom{$ introduce $\Delta_{3}:}{\Delta_{1}+\Delta_{2}+\Delta_{3}-\tau-\sigma \in \mathbb{Z}}$

* Exact integral formula
* The index encodes (weighted) degeneracies:

$$
\mathcal{I}=1+\# y+\# y^{2}+\ldots+d(Q) y^{Q}+\ldots
$$

To extract the degeneracies:

$$
d(Q)=\frac{1}{2 \pi i} \oint \frac{d y}{y^{Q+1}} \mathcal{I}(y)=\oint d \Delta e^{\log \mathcal{I}(\Delta)-2 \pi i Q \Delta}
$$

Assuming large degeneracies, saddle-point approximation \rightarrow Legendre transform

$$
\text { entropy }=\log d(Q) \simeq \log \mathcal{I}(\Delta)-\left.2 \pi i Q \Delta\right|_{\Delta=\text { extremum }}
$$

Remarks:

- We are interested in $Q \sim N^{2}$ in the large N limit
- One can prove that, at least at leading order in N, the index captures the full entropy

Many approaches to large N matrix model:

- direct saddle-point approx
- Cardy limit $\tau \rightarrow 0$
- saddle-point approx for non-analytic extension
- Gross-Witten-Wadia-like expansion
- giant graviton expansion
* Here:

Bethe Ansatz formula for the superconformal index

Alternative formula: (set $\tau=\sigma$)

$$
\mathcal{I}=\sum_{u \in \mathfrak{M}_{\mathrm{BAE}}} \mathcal{Z}(u ; \Delta, \tau, \tau) H(u ; \Delta, \tau)^{-1}
$$

(1) $\mathfrak{M}_{\text {BAE }}$ are solutions to "Bethe Ansatz Equations" for $\operatorname{rk}(G)$ complexified holonomies $\left[u_{i}\right]$ living on a complex torus T_{τ}^{2} of modular parameter τ :
$\mathfrak{M}_{\text {BAE }}$:
$\operatorname{SU}(N) \mathcal{N}=4 \mathrm{SYM}$

$$
Q_{i}(u)=\prod_{a=1}^{3} \prod_{j=1}^{N} \frac{\theta\left(\Delta_{a}-u_{i j} ; \tau\right)}{\theta\left(\Delta_{a}+u_{i j} ; \tau\right)}=1
$$

$$
\begin{gathered}
u_{i j}= \\
u_{i}-u_{j} \neq 0
\end{gathered}
$$

Equations are defined on T_{τ}^{2} and are invariant under $S L(2, \mathbb{Z})$
(2) \mathcal{Z} is the same integrand as in the integral formula
(3) H is a Jacobian: $\quad H=\operatorname{det}_{i j} \partial Q_{i} / \partial u_{j}$

* Discrete family of exact solutions

Classified by subgroups of $\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ of order N
Labelled by $\{m, r\}$ with $m \cdot n=N$ and $r \in \mathbb{Z}_{n}$

- Basic solution $\{1,0\}: \quad u_{j} \sim \frac{\tau}{N} j$

- $S L(2, \mathbb{Z})$-TRANSFORMED SOL's

- More general $S L(2, \mathbb{Z})$ orbits: $\quad m>1 \quad \operatorname{gcd}(m, n, r)>1$
* Continuous families of solutions
(conjectured to correspond to vacua of $\mathcal{N}=1^{*}$ theory)
e.g.
[Ardehali, Hong, Liu 19; Lezcano, Hong, Liu, Pando Zayas 21; FB, Rizi 21]

Contribution of BASIC SOLUTION at large N

Does the index reproduce the Bekenstein-Hawking entropy?

- Contribution of basic solution $\{1,0\}$ at large N :

$$
\left.\lim _{N \rightarrow \infty} \mathcal{I}\left(\tau, \Delta_{1}, \Delta_{2}\right)\right|_{\substack{\text { BASIC } \\ \text { SOLUTION }}} \simeq \exp \left(-i \pi N^{2} \frac{\left[\Delta_{1}\right]_{\tau}\left[\Delta_{2}\right]_{\tau}\left[\Delta_{3}\right]_{\tau}}{\tau^{2}}\right)
$$

Large N limit is a discontinuous analytic function: Stokes phenomenon

$$
[\Delta]_{\tau} \equiv \Delta+n \quad \text { s.t. } \in \operatorname{STRIP}
$$

Black hole entropy

Extract Bekenstein-Hawking entropy from $\left.\mathcal{I}\right|_{\text {basic solution }}$

* Set $X_{1}=\left[\Delta_{1}\right]_{\tau} \quad X_{2}=\left[\Delta_{2}\right]_{\tau}$. Obtain "entropy function":

$$
\log \mathcal{I}=-i \pi N^{2} \frac{X_{1} X_{2} X_{3}}{\tau^{2}} \quad \text { with } \quad \sum_{a=1}^{3} X_{a}=2 \tau-1
$$

Its (constrained) Legendre transform exactly gives the BH black hole entropy:

$$
S_{\mathrm{BH}}=\log \mathcal{I}-\left.2 \pi i\left(\sum X_{a} \frac{R_{a}}{2}+2 \tau J\right)\right|_{\substack{\text { constrained } \\ \text { extremum }}}
$$

Similar procedures work in other setups and dimensions, from AdS_{4} to AdS_{7}

Bekenstein-Hawking entropy from various types of indices:

BPS rotating black holes
(possibly with electric and magnetic flavor charges)

superconformal indices

BPS black holes with
R-symmetry magnetic charge
(possibly rotating and with electric/magnetic flavor charges)

topologically twisted indices

Beyond the leading order

Expansion of the index at large N :

$$
\mathcal{I}=\sum_{\text {solutions } \in \mathfrak{M}_{\mathrm{BAE}}} e^{\mathcal{O}\left(N^{2}\right)+\ldots}
$$

It looks like a semiclassical expansion

* Large N contribution of $\{m, r\}$ solutions (with fixed m, r):

$$
\begin{aligned}
& \log \mathcal{I}_{\{m, r\}}=-\frac{i \pi N^{2}}{m} \frac{\left[m \Delta_{1}\right]_{\bar{\tau}}\left[m \Delta_{2}\right]_{\tilde{\tau}}\left[m \Delta_{3}\right]_{\tilde{\tau}}}{(m \tau+r)^{2}}+\log N+\mathcal{O}(1) \\
&+\sum e^{\frac{2 \pi i N}{m} \frac{\left[m \Delta_{a l \tilde{\tau}}\right.}{\tau}}+\ldots \\
&(m
\end{aligned}
$$

where $\quad \sum_{a}\left[m \Delta_{a}\right]_{\check{\tau}}=2 \check{\tau}-1 \quad$ and $\quad \check{\tau}=m \tau+r$

- Is there anything to learn from this QFT data?

Gravitational path-integral

- Superconformal index is computed by Euclidean partition function in QFT

$$
\mathcal{I}_{\mathrm{SCFT}}=Z_{S^{3} \times S^{1}} \quad(\text { with suitable regularization })
$$

- Holographically: $\quad Z_{S^{3} \times S^{1}}=\begin{gathered}\text { string theory } \\ \text { path-integral }\end{gathered} \simeq \begin{gathered}\text { classical } \\ \text { saddles }\end{gathered}+$ corrections

Fill-in bulk geometry for given boundary conditions
[Witten 98; Dijkgraaf, Maldacena, Moore, Verlinde 00]
[Maloney, Witten 07]

- Only SUSY configurations contribute to SUSY observables (localization)
- Euclidean rotation of Lorentzian BPS black hole has $\beta=\infty$ (extremal, $T=0$)
\Rightarrow Look for complex Euclidean SUSY solutions

Complex Euclidean solutions

* Consider full family of
[Chong, Cvetic, Lu, Pope 05]
of non-SUSY black hole solutions (here 6-dim)
[Cvetic, Gibbons, Lu, Pope 05] [Wu 11]
Generic complex values of parameters
\Rightarrow complex metric and gauge fields
Impose SUSY but not extremality

Impose the boundary conditions

- As for the saddle-point approximation to one-dimensional integrals, we are let to include complex saddles in Euclidean semi-classical expansion of gravity.
- Boundary metric:

$$
d s_{\mathrm{bdy}}^{2}=\underbrace{d t_{\mathrm{E}}^{2}}_{S^{1}}+\underbrace{d \hat{\theta}^{2}+\sin ^{2} \hat{\theta} d \phi^{2}+\cos ^{2} \hat{\theta} \psi^{2}}_{S^{3}}
$$

with $\quad\left(t_{\mathrm{E}}, \phi, \psi\right) \cong\left(t_{\mathrm{E}}+\beta, \phi+2 \pi \tau^{\mathrm{g}}-i \beta, \psi+2 \pi \sigma^{\mathrm{g}}-i \beta\right)$
(from regularity at the horizon)
ϕ, ψ defined $\bmod 2 \pi \quad \Rightarrow \quad$ all $\tau^{\mathrm{g}}, \sigma^{\mathrm{g}}+\mathbb{Z}$ give same boundary metric

- Boundary gauge field:

$$
\exp \left\{-i \oint_{S^{1}(\mathrm{bdy})} A_{a}\right\}=\exp \left\{2 \pi i \Delta_{a}^{\mathrm{g}}+\beta\right\}
$$

Holonomy is gauge inv. \Rightarrow all $\Delta_{a}^{\mathrm{g}}+\mathbb{Z}$ give same boundary gauge bundle

$$
\star \text { B.C.'s only fix (constrained) complex potentials up to } \mathbb{Z} \text { shifts! }
$$

$\tau^{\mathrm{g}}, \sigma^{\mathrm{g}}, \Delta_{a}^{\mathrm{g}}$ parametrize gravity solutions
[Cabo-Bizet, Cassani, Martelli, Murthy 18]
SUSY: $\quad \sum_{a} \Delta_{a}^{\mathrm{g}}=\tau^{\mathrm{g}}+\sigma^{\mathrm{g}} \mp 1$

Match with Bethe Ansatz formula?

^ On-shell action of complex Euclidean SUSY solutions:

$$
I_{\mathrm{grav}}=-i \pi N^{2} \frac{\left(\Delta_{1}-n_{1}\right)\left(\Delta_{2}-n_{2}\right)\left(\Delta_{3}-n_{3}\right)}{\left(\tau+n_{4}\right)\left(\tau+n_{5}\right)}
$$

with $\quad \sum_{a} \Delta_{a}=2 \tau-1 \quad$ and $\quad \sum_{\alpha=1}^{5} n_{\alpha}=0$

$$
\rightsquigarrow \sum_{n_{1}, n_{2}, n_{3}, n_{4}}
$$

\star Large N index contribution of $m=1$ subfamily $\{1, r\}$:

$$
\log \mathcal{I}_{\{m, r\}}=-i \pi N^{2} \frac{\left[\Delta_{1}\right]_{\check{\tau}}\left[\Delta_{2}\right]_{\check{\tau}}\left[\Delta_{3}\right]_{\check{\tau}}}{(\tau+r)^{2}}+\ldots
$$

where $\quad \sum_{a}\left[\Delta_{a}\right]_{\check{\tau}}=2 \check{\tau}-1 \quad$ and $\quad \check{\tau}=\tau+r$
$\leadsto \quad \sum_{r}$

- Matching contributions but ... gravity has too many solutions!

Euclidean D3-branes

Non-perturbative corrections from Euclidean SUSY D3-branes
wrapped on 10d geometry at the horizon

- Two possible $S^{1} \subset S^{3}$
- Three possible $S^{3} \subset S^{5}$

On-shell action:

$$
S_{\mathrm{D} 3}=2 \pi N \frac{\Delta_{a}^{\mathrm{g}}}{\tau^{\mathrm{g}}} \quad \text { or } \quad S_{\mathrm{D} 3}=2 \pi N \frac{\Delta_{a}^{\mathrm{g}}}{\sigma^{\mathrm{g}}}
$$

Non-perturbative corrections: generic positive integer linear combinations of those

* Effect of D3-brane corrections:

$$
\mathcal{I}=Z_{S^{3} \times S^{1}} \simeq e^{I_{\mathrm{g} \text { gav }}}+\sum_{k} e^{I_{\mathrm{g} \text { gav }}} e^{i k S_{\mathrm{D} 3}} \simeq \exp \{\underbrace{I_{\mathrm{grav}}}_{\mathcal{O}\left(N^{2}\right)}+\sum_{k} \underbrace{e^{i k S_{\mathrm{D} 3}}}_{\mathcal{O}\left(e^{-N}\right)}\}
$$

Criterium to retain a complex saddle:

$$
\mathbb{I m} S_{\mathrm{D} 3}>0 \quad \text { for all (SUSY) D3-brane embeddings }
$$

Violation implies "D3-brane condensation" towards some other saddle point. Expected to signal that complex saddle point does not contribute to integral.
$\star \quad \begin{array}{rr}\text { Apply criterium } \\ \text { (for } \tau=\sigma \text { in QFT) }\end{array} \quad \Rightarrow \quad\left\{\begin{array}{rr}\tau^{\mathrm{g}}=\sigma^{\mathrm{g}}=\tau+r & \text { for any } r \\ \Delta_{a}^{\mathrm{g}}=\left[\Delta_{a}\right]_{\tau+r} & \rightsquigarrow \sum_{r}\end{array}\right.$
Precise match between cplx gravitational saddles and $\{1, r\}$ subfamily

Exponents of non-perturbative corrections match:

$$
\begin{aligned}
e^{i S_{\mathrm{D} 3}} & =e^{2 \pi i N \frac{\Delta_{a}^{g}}{\tau^{g}}} \text { or } e^{2 \pi i N \frac{\Delta_{a}^{g}}{\sigma^{g}}} \\
\log \mathcal{I}_{\{1, r\}} & =\ldots+\sum \# e^{2 \pi i N \frac{\left[\Delta_{a}\right]_{\tilde{j}}}{\tilde{\tau}}} \ldots
\end{aligned}
$$

Exponentially small $\mathcal{O}\left(e^{-N}\right)$ corrections when criterium is satisfied

- Interesting to compute prefactor \# and compare with D3-brane quantization

Orbifold geometries: $m>1$

The $\{m, r\}$ solutions with $m>1$ correspond to
SUSY orbifolds of 10d lift of the previous solutions

- Take a SUSY complex solution with $\widetilde{\beta}=m \beta, \quad \widetilde{\tau}^{\mathrm{g}}, \widetilde{\sigma}^{\mathrm{g}}, \quad \widetilde{\Delta}_{a}^{\mathrm{g}}$ Orbifold:

$$
\left(t_{\mathrm{E}}, \hat{\phi}, \hat{\psi}, \phi_{a}\right) \cong\left(t_{\mathrm{E}}+\frac{\widetilde{\beta}}{m}, \hat{\phi}-\frac{2 \pi r_{1}}{m}, \hat{\psi}-\frac{2 \pi r_{2}}{m}, \quad \phi_{a}-\frac{2 \pi s_{a}}{m}\right)
$$

"Stability" of Euclidean D3-branes $\quad \Rightarrow \quad\left\{\begin{array}{c}\widetilde{\tau}^{\mathrm{g}}=\widetilde{\sigma}^{\mathrm{g}}=m \tau+r \equiv \check{\tau} \\ \widetilde{\Delta}_{a}^{\mathrm{g}}=\left[m \Delta_{a}\right]_{\check{\tau}}\end{array}\right.$
On-shell action reduced by $\frac{1}{m} \quad \sim \quad$ Match with $\log \mathcal{I}_{\{m, r\}}$
$\log \mathcal{I}_{\{m, r\}}=-\frac{i \pi N^{2}}{m} \frac{\left[m \Delta_{1}\right]_{\tilde{\tau}}\left[m \Delta_{2}\right]_{\tilde{\tau}}\left[m \Delta_{3}\right]_{\tilde{\tau}}}{\check{\tau}^{2}}+\ldots+\sum \# e^{\frac{2 \pi i N}{m} \frac{\left[m \Delta_{a}\right]_{\tilde{\tau}}}{\check{\tau}}}+\ldots$

We expect our criterium on the sign of the imaginary part of the exponent in non-perturbative corrections
to play the role of a proxy for steepest descent and Lefschetz-thimble analysis in gravity

Hints of new physics?

* In expansion of the superconformal index, there are other contributions we have not yet evaluated:
- $\{m, r\}$ discrete solutions with different scaling with N
- continuous families of solutions

They might capture interesting gravity solutions

* There are other Euclidean SUSY D3-branes.

They destabilize even the solutions that match with the index, in certain regions of parameter space.

What does this destabilization represent? Where does it lead to?

Conclusions

Summary:

- Careful analysis of superconformal index of $\mathcal{N}=4 \mathrm{SYM}$, using an alternative Bethe Ansatz formulation.
Large N : each Bethe Ansatz solution represents a complex saddle point.
- One solution exactly reproduces the Bekenstein-Hawking entropy of BPS black holes in $\mathrm{AdS}_{5} \times S^{5}$.
- Other solutions give corrections from complex gravitational saddles. Criterium: discard complex saddles with diverging D3-instanton corrections.

Some open questions:

- Consequences for Lorentzian physics? Which phases / phase transitions?
- Can we compute corrections more precisely?
- Other Bethe Ansatz solutions? Continuous families?
- Multi-center black holes? [We have found probe branes]

