Classical Yang-Baxter equation, Lagrangian

 multiforms and ultralocal integrable hierarchiesVincent Caudrelier

n
 UNIVERSITY OF LEEDS

Shing-Tung Yau Center of Southeast University Theoretical Physics Seminars

Based on arXiv:2201.08286 with M. Stoppato, B. Vicedo

General context

Integrable classical field theories in $1+1$ dimensions

- Can be viewed as Lagrangian systems associated to an action with Lagrangian (density) $\mathscr{L}[u]$

$$
S[u]=\int_{\sigma} \mathscr{L}[u] d x \wedge d t
$$

NB: σ is a two-dimensional manifold and $\mathscr{L}[u] d x \wedge d t$ is a volume form.

General context

Integrable classical field theories in $1+1$ dimensions

- Can be viewed as Lagrangian systems associated to an action with Lagrangian (density) $\mathscr{L}[u]$

$$
S[u]=\int_{\sigma} \mathscr{L}[u] d x \wedge d t
$$

NB: σ is a two-dimensional manifold and $\mathscr{L}[u] d x \wedge d t$ is a volume form.

- Can also be viewed as (infinite dimensional) Hamiltonian systems.

$$
H[u]=\int_{\gamma} \mathcal{H}[u] d x, \quad \gamma \subseteq \mathbb{R}
$$

General context: Lagrange vs Hamilton?

- (Liouville) integrability: e.g. countable number of charges in involution defining compatible flows on the fields of the theory.

$$
\left\{H_{i}, H_{j}\right\}=0, \quad \partial_{t_{i}}=\left\{\cdot, H_{i}\right\}, \quad\left[\partial_{t_{i}}, \partial_{t_{j}}\right]=0
$$

General context: Lagrange vs Hamilton?

- (Liouville) integrability: e.g. countable number of charges in involution defining compatible flows on the fields of the theory.

$$
\left\{H_{i}, H_{j}\right\}=0, \quad \partial_{t_{i}}=\left\{\cdot, H_{i}\right\}, \quad\left[\partial_{t_{i}}, \partial_{t_{j}}\right]=0
$$

\rightarrow natural to think of an integrable systems as being part of an integrable hierarchy: The physical Hamiltonian is part of an infinite family H_{1}, H_{2}, \ldots The physical time is part of a hierarchy of times t_{1}, t_{2}, \ldots.

General context: Lagrange vs Hamilton?

- (Liouville) integrability: e.g. countable number of charges in involution defining compatible flows on the fields of the theory.

$$
\left\{H_{i}, H_{j}\right\}=0, \quad \partial_{t_{i}}=\left\{\cdot, H_{i}\right\}, \quad\left[\partial_{t_{i}}, \partial_{t_{j}}\right]=0
$$

\rightarrow natural to think of an integrable systems as being part of an integrable hierarchy: The physical Hamiltonian is part of an infinite family H_{1}, H_{2}, \ldots The physical time is part of a hierarchy of times t_{1}, t_{2}, \ldots.

- Integrability, both classically and quantum mechanically, has been studied overwhelmingly from the Hamiltonian point of view (Liouville theorem, bi-Hamiltonian systems, Quantum Inverse Scattering method, etc.)

General context: Lagrange vs Hamilton?

Joseph-Louis
Lagrange

Which is more
fundamental?

William Rowan Hamilton

(1805-65)

- Question: how to capture/define (classical) integrability solely from the Lagrangian point of view? There is only one Lagrangian, as opposed to a hierarchy of Hamiltonians.

1. Variational criterion for integrability: Lagrangian multiforms
2. Lagrangian multiforms: key equations, properties, examples
3. How to construct a Lagrangian multiform?
a. Key example: Ablowitz-Kaup-Newell-Segur hierarchy
b. Important observations leading to generalisation
4. A generating Lagrangian multiform for ultralocal field theories and CYBE
5. Conclusions, outlook, open questions

1. Variational criterion for integrability: Lagrangian multiforms

Back to the question: how to define (classical) integrability from the Lagrangian point of view?

1. Variational criterion for integrability: Lagrangian multiforms

Back to the question: how to define (classical) integrability from the Lagrangian point of view?

- Answer originally proposed in [Lobb, Nijhoff '09] (in the discrete setting). Presented here for field theories.

1. Variational criterion for integrability: Lagrangian multiforms

Back to the question: how to define (classical) integrability from the Lagrangian point of view?

- Answer originally proposed in [Lobb, Nijhoff '09] (in the discrete setting). Presented here for field theories.

1. Replace the Lagrangian volume form (denote x, t by t_{1}, t_{2})

$$
\mathscr{L}[u]=\mathscr{L}_{12}[u] d t_{1} \wedge d t_{2}
$$

by a Lagrangian multiform

$$
\mathscr{L}[u]=\sum_{i<j} \mathscr{L}_{i j}[u] d t_{i} \wedge d t_{j}
$$

\rightarrow a two-form on a higher dimensional manifold \mathcal{M} whose coordinates are the "times" t_{i} of the hierarchy.

1. Variational criterion for integrability: Lagrangian multiforms

2. Define an associated action

$$
\mathcal{S}[u, \sigma]=\int_{\sigma} \sum_{i<j} \mathcal{L}_{i j}[u] d t_{i} \wedge d t_{j}
$$

1. Variational criterion for integrability: Lagrangian multiforms
2. Define an associated action

$$
\mathcal{S}[u, \sigma]=\int_{\sigma} \sum_{i<j} \mathcal{L}_{i j}[u] d t_{i} \wedge d t_{j}
$$

and a generalised variational principle:
(i) A field u is critical for $\mathscr{L}[u]$ if it is a critical configuration of $\mathcal{S}[u, \sigma]$ for "arbitrary" surface σ in \mathcal{M}.
(ii) On critical configurations, the value of the action $\mathcal{S}[u, \sigma]$ is independent of σ : it is stationary with respect to local variations of the surface σ.

2. Lagrangian multiforms: key equations and properties

Intuition behind the proposed principle: The arbitrariness of σ implements variationally the idea of commuting Hamiltonian vectors fields in continuous setting.

2. Lagrangian multiforms: key equations and properties

Intuition behind the proposed principle: The arbitrariness of σ implements variationally the idea of commuting Hamiltonian vectors fields in continuous setting.

- Consequences of the generalised principle on simplest case:

$$
\mathscr{L}[u]=\mathscr{L}_{12}[u] d t_{1} \wedge d t_{2}+\mathscr{L}_{13}[u] d t_{1} \wedge d t_{3}+\mathscr{L}_{23}[u] d t_{2} \wedge d t_{3}
$$

with

$$
\mathscr{L}_{i j}[u]=\mathscr{L}_{i j}\left(u, u_{t_{1}}, u_{t_{2}}, u_{t_{3}}\right) \quad \text { (first order Lagrangians) }
$$

If $\sigma=\left(t_{1}, t_{2}\right)$-plane then

$$
S[u, \sigma]=\int_{\mathbb{R}^{2}} \mathscr{L}_{12}\left(u, u_{t_{1}}, u_{t_{2}}, u_{t_{3}}\right) d t_{1} \wedge d t_{2}
$$

and

$$
\begin{aligned}
\delta_{u} S[u, \sigma]= & \int_{\mathbb{R}^{2}}\left(\frac{\partial \mathscr{L}_{12}}{\partial u}-\partial_{t_{1}} \frac{\partial \mathscr{L}_{12}}{\partial u_{t_{1}}}-\partial_{t_{2}} \frac{\partial \mathscr{L}_{12}}{\partial u_{t_{2}}}\right) \delta u \wedge d t_{1} \wedge d t_{2} \\
& +\int_{\mathbb{R}^{2}}\left(\partial_{t_{1}}\left(\frac{\partial \mathscr{L}_{12}}{\partial u_{t_{1}}} \delta u\right)+\partial_{t_{2}}\left(\frac{\partial \mathscr{L}_{12}}{\partial u_{t_{2}}} \delta u\right)\right) d t_{1} \wedge d t_{2} \\
& +\int_{\mathbb{R}^{2}}\left(\frac{\partial \mathscr{L}_{12}}{\partial u_{t_{3}}} \delta u_{t_{3}}\right) d t_{1} \wedge d t_{2}
\end{aligned}
$$

2. Lagrangian multiforms: key equations and properties

- Hence, one obtains:
(1) Euler-Lagrange equations for $\mathscr{L}_{12}: \frac{\delta \mathscr{L}_{12}}{\delta u}=0$;
(2) boundary terms $\rightarrow 0$;
(3) New structural equation $\rightarrow \frac{\partial \mathscr{L}_{12}}{\partial u_{3}}=0$.

2. Lagrangian multiforms: key equations and properties

- Hence, one obtains:
(1) Euler-Lagrange equations for $\mathscr{L}_{12}: \frac{\delta \mathscr{L}_{12}}{\delta u}=0$;
(2) boundary terms $\rightarrow 0$;
(3) New structural equation $\rightarrow \frac{\partial \mathscr{L}_{12}}{\partial u_{3}}=0$.
- If $\sigma=\sigma_{1} \cup \sigma_{2}$ (union of two half-planes) then

$$
S[u, \sigma]=\int_{\sigma_{1}} \mathscr{L}_{12} d t_{1} \wedge d t_{2}+\int_{\sigma_{2}} \mathscr{L}_{13} d t_{1} \wedge d t_{3}
$$

- Similar derivation gives
(1) Euler-Lagrange equations for \mathscr{L}_{12} and \mathscr{L}_{13};
(2) $\frac{\partial \mathscr{L}_{12}}{\partial u_{t_{3}}}=0$ as before and $\frac{\partial \mathscr{L}_{13}}{\partial u_{t_{2}}}=0$;
(3) New structural equation

$$
\frac{\partial \mathscr{L}_{12}}{\partial u_{t_{2}}}+\frac{\partial \mathscr{L}_{13}}{\partial u_{t_{3}}}=0
$$

2. Lagrangian multiforms: key equations and properties

Summary: generalised variational principle gives the multi-time Euler-Lagrange equations for the Lagrangian coefficients $\mathscr{L}_{i j}$ of $\mathscr{L}[u]$. [Suris, Vermeeren '15]

- General structure:
(1) Euler-Lagrange equations for each $\mathscr{L}_{i j}$;
(2) Structural equations on $\mathscr{L}_{i j}$, called "corner equations" \rightarrow select the $\mathscr{L}_{i j}$ and good candidates for integrable theories.

2. Lagrangian multiforms: key equations and properties

Summary: generalised variational principle gives the multi-time Euler-Lagrange equations for the Lagrangian coefficients $\mathscr{L}_{i j}$ of $\mathscr{L}[u]$. [Suris, Vermeeren '15]

- General structure:
(1) Euler-Lagrange equations for each $\mathscr{L}_{i j}$;
(2) Structural equations on $\mathscr{L}_{i j}$, called "corner equations" \rightarrow select the $\mathscr{L}_{i j}$ and good candidates for integrable theories.
- Multi-time Euler-Lagrange equations rederived and generalised in several ways, e.g. [Sleigh, Nijhoff, Caudrelier '20].

2. Lagrangian multiforms: key equations and properties

Summary: generalised variational principle gives the multi-time Euler-Lagrange equations for the Lagrangian coefficients $\mathscr{L}_{i j}$ of $\mathscr{L}[u]$. [Suris, Vermeeren '15]

- General structure:
(1) Euler-Lagrange equations for each $\mathscr{L}_{i j}$;
(2) Structural equations on $\mathscr{L}_{i j}$, called "corner equations" \rightarrow select the $\mathscr{L}_{i j}$ and good candidates for integrable theories.
- Multi-time Euler-Lagrange equations rederived and generalised in several ways, e.g. [Sleigh, Nijhoff, Caudrelier '20].
- Outcome: compact formulation achieved using the variational bicomplex formalism

$$
\delta d \mathscr{L}[u]=0
$$

Several advantages: coordinates independent formulation, valid for d-form $d=1,2,3, \ldots$, for higher order Lagrangians

2. Lagrangian multiforms: key equations and properties

Intuition behind the second requirement

- On solutions, the action is stationary with respect to local variations of the surface σ :

$$
\mathcal{S}[u, \sigma]=\mathcal{S}\left[u, \sigma^{\prime}\right] \Rightarrow \int_{\partial B} \mathcal{L}[u]=0 \Rightarrow \int_{B} d \mathcal{L}[u]=0
$$

2. Lagrangian multiforms: key equations and properties

Intuition behind the second requirement

- On solutions, the action is stationary with respect to local variations of the surface σ :

$$
\mathcal{S}[u, \sigma]=\mathcal{S}\left[u, \sigma^{\prime}\right] \Rightarrow \int_{\partial B} \mathcal{L}[u]=0 \Rightarrow \int_{B} d \mathcal{L}[u]=0
$$

\rightarrow Closure relation: $d \mathscr{L}[u]=0$ on-shell.

2. Lagrangian multiforms: key equations and properties

Intuition behind the second requirement

- On solutions, the action is stationary with respect to local variations of the surface σ :

$$
\mathcal{S}[u, \sigma]=\mathcal{S}\left[u, \sigma^{\prime}\right] \Rightarrow \int_{\partial B} \mathcal{L}[u]=0 \Rightarrow \int_{B} d \mathcal{L}[u]=0
$$

\rightarrow Closure relation: $d \mathscr{L}[u]=0$ on-shell.
With

$$
\mathscr{L}[u]=\sum_{i<j} \mathscr{L}_{i j}[u] d t_{i} \wedge d t_{j}
$$

$d \mathscr{L}[u]=\sum_{i<j<k}\left(\partial_{t_{k}} \mathscr{L}_{i j}[u]+\partial_{t_{j}} \mathscr{L}_{k i}[u]+\partial_{t_{i}} \mathscr{L}_{j k}[u]\right) d t_{i} \wedge d t_{j} \wedge d t_{k}$
so, in components,

$$
\partial_{t_{k}} \mathscr{L}_{i j}[u]+\partial_{t_{j}} \mathscr{L}_{k i}[u]+\partial_{t_{i}} \mathscr{L}_{j k}[u]=0
$$

2. Lagrangian multiforms: key equations and properties

Why is it a good criterion?

- It works!

2. Lagrangian multiforms: key equations and properties

Why is it a good criterion?

- It works!

Many examples of integrable hierarchies (1,2 even 3D) are now constructed which fulfill all the requirements: the theory is not empty and captures integrability. See examples and construction below.

2. Lagrangian multiforms: key equations and properties

Why is it a good criterion?

- It works!

Many examples of integrable hierarchies (1,2 even 3D) are now constructed which fulfill all the requirements: the theory is not empty and captures integrability. See examples and construction below.

- $\delta d \mathscr{L}=0$ linked to commutativity of Hamiltonian flows and closure relation linked to known criterion $\left\{H_{i}, H_{j}\right\}=0$ (for certain Lagrangian 1-forms and 2-forms [Suris '13; Vermeeren ${ }^{211]}$)

2. Lagrangian multiforms: key equations and properties

Why is it a good criterion?

- It works!

Many examples of integrable hierarchies (1,2 even 3D) are now constructed which fulfill all the requirements: the theory is not empty and captures integrability. See examples and construction below.

- $\delta d \mathscr{L}=0$ linked to commutativity of Hamiltonian flows and closure relation linked to known criterion $\left\{H_{i}, H_{j}\right\}=0$ (for certain Lagrangian 1-forms and 2-forms [Suris '13; Vermeeren ${ }^{211]}$)
- The main topic today: link to classical r-matrix and classical Yang-Baxter equation.
- Problem: how to get the Lagrangians $\mathcal{L}_{i j}$ for all $i, j \geq 0$?
- Problem: how to get the Lagrangians $\mathcal{L}_{i j}$ for all $i, j \geq 0$?
- In principle, $\mathscr{L}_{1 n}$ not so hard: Legendre transform the known hierarchy of Hamiltonians H_{n}. The other $\mathscr{L}_{i j}$ are the main problem.
- Problem: how to get the Lagrangians $\mathcal{L}_{i j}$ for all $i, j \geq 0$?
- In principle, $\mathscr{L}_{1 n}$ not so hard: Legendre transform the known hierarchy of Hamiltonians H_{n}. The other $\mathscr{L}_{i j}$ are the main problem.
- Technical and difficult problem: several methods (brute force, variational symmetries, discrete to continuum). Results essentially for a finite number of levels in the hierarchy [Suris, Vermeeren '16; Sleigh, Nijhoff, Caudrelier '19; Vermeeren '19; Petrera, Vermeeren '19]

Example: Nonlinear Schrödinger and modified KdV levels in Ablowitz-Kaup-Newell-Segur hierarchy

$$
\begin{aligned}
q_{2}-\frac{i}{2} q_{11}+i q^{2} r=0, & r_{2}+\frac{i}{2} r_{11}-i q r^{2}=0, \\
q_{3}+\frac{1}{4} q_{111}-\frac{3}{2} q r q_{1}=0, & r_{3}+\frac{1}{4} r_{111}-\frac{3}{2} q r r_{1}=0 .
\end{aligned}
$$

Example: Nonlinear Schrödinger and modified KdV levels in Ablowitz-Kaup-Newell-Segur hierarchy

$$
\begin{aligned}
q_{2}-\frac{i}{2} q_{11}+i q^{2} r=0, & r_{2}+\frac{i}{2} r_{11}-i q r^{2}=0, \\
q_{3}+\frac{1}{4} q_{111}-\frac{3}{2} q r q_{1}=0, & r_{3}+\frac{1}{4} r_{111}-\frac{3}{2} q r r_{1}=0 .
\end{aligned}
$$

Lagrangians

$$
\begin{gathered}
\mathscr{L}_{12}=\frac{1}{2}\left(r q_{2}-q r_{2}\right)+\frac{i}{2} q_{1} r_{1}+\frac{i}{2} q^{2} r^{2} \\
\mathscr{L}_{13}=\frac{1}{2}\left(r q_{3}-q r_{3}\right)-\frac{1}{8}\left(r_{1} q_{11}-q_{1} r_{11}\right)-\frac{3 q r}{8}\left(r q_{1}-q r_{1}\right)
\end{gathered}
$$

Example: Nonlinear Schrödinger and modified KdV levels in Ablowitz-Kaup-Newell-Segur hierarchy

$$
\begin{aligned}
q_{2}-\frac{i}{2} q_{11}+i q^{2} r=0, & r_{2}+\frac{i}{2} r_{11}-i q r^{2}=0, \\
q_{3}+\frac{1}{4} q_{111}-\frac{3}{2} q r q_{1}=0, & r_{3}+\frac{1}{4} r_{111}-\frac{3}{2} q r r_{1}=0 .
\end{aligned}
$$

Lagrangians

$$
\begin{gathered}
\mathscr{L}_{12}=\frac{1}{2}\left(r q_{2}-q r_{2}\right)+\frac{i}{2} q_{1} r_{1}+\frac{i}{2} q^{2} r^{2} \\
\mathscr{L}_{13}=\frac{1}{2}\left(r q_{3}-q r_{3}\right)-\frac{1}{8}\left(r_{1} q_{11}-q_{1} r_{11}\right)-\frac{3 q r}{8}\left(r q_{1}-q r_{1}\right) \\
\mathscr{L}_{23}= \\
\frac{1}{4}\left(q_{2} r_{11}-r_{2} q_{11}\right)-\frac{i}{2}\left(q_{3} r_{1}+r_{3} q_{1}\right)+\frac{1}{8}\left(q_{1} r_{12}-r_{1} q_{12}\right) \\
+ \\
-\frac{3 q r}{8}\left(q r_{2}-r q_{2}\right)-\frac{i}{8} q_{11} r_{11}+\frac{i}{4} q r\left(q r_{11}+r q_{11}\right) \\
- \\
\frac{i}{8}\left(q r_{1}-r q_{1}\right)^{2}-\frac{i}{2} q^{3} r^{3} .
\end{gathered}
$$

Our method: Confluence of several ideas

1) Generating formalism and "compounding the hierarchy" idea advocated e.g. in [Nijhoff ' 83] in the Lagrangian formalism.
2) Zakharov-Mikhailov insighful result on Lagrangian formulation of zero curvature equations for rational Lax pairs.
[Zakharov, Mikhailov '80]
3) Flaschka-Newell-Ratiu (FNR) construction of the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy [Flaschka, Newell, Ratiu '83] and the comparison of their generating function for conservation laws with our known first few covariant Hamiltonians $\mathcal{H}_{i j}$ for AKNS [Caudrelier, Stoppato '20].

Idea 1): generating Lagrangian multiform

- Assemble the Lagrangian coefficients $\mathscr{L}_{i j}$ into a formal series

$$
\mathscr{L}(\lambda, \mu)=\sum_{i, j=0}^{\infty} \frac{\mathscr{L}_{i j}}{\lambda^{i+1} \mu^{j+1}}
$$

- Propose a formula for $\mathscr{L}(\lambda, \mu)$.

Idea 2) and 3): form of $\mathscr{L}(\lambda, \mu)$

- $\mathscr{L}(\lambda, \mu)=K(\lambda, \mu)-V(\lambda, \mu)$ with

$$
K(\lambda, \mu)=\operatorname{Tr}\left(\phi(\mu)^{-1} \partial_{\lambda} \phi(\mu) Q_{0}-\phi(\lambda)^{-1} \partial_{\mu} \phi(\lambda) Q_{0}\right),
$$

$$
V(\lambda, \mu)=-\frac{1}{2} \operatorname{Tr} \frac{(Q(\lambda)-Q(\mu))^{2}}{\lambda-\mu} .
$$

where $Q_{0}=-i \sigma_{3}, \partial_{\mu} \equiv \sum_{k=0}^{\infty} \frac{1}{\mu^{k+1}} \partial_{t_{k}}$, and

$$
\phi(\lambda)=\mathbb{I}+\sum_{j=1}^{\infty} \frac{\phi_{j}}{\lambda^{j}}, \quad Q(\lambda)=\phi(\lambda) Q_{0} \phi^{-1}(\lambda)
$$

\rightarrow formal dressing in sl ${ }_{2}$ loop algebra.
3. How to construct a Lagrangian multiform?

Why am I claiming that we have a Lagrangian multiform for the AKNS hierarchy?

- [Flaschka, Newell, Ratiu '83] showed that, with

$$
Q(\lambda)=\sum_{j=0}^{\infty} Q_{j} \lambda^{-j}, \quad Q_{j}=\left(\begin{array}{cc}
a_{j} & b_{j} \\
c_{j} & -a_{j}
\end{array}\right) \in \mathfrak{s l}_{2}, \quad Q_{0}=-i \sigma_{3}
$$

all (positive) AKNS flows can be be written as

$$
\partial_{t_{k}} Q(\lambda)=\left[V^{(k)}(\lambda), Q(\lambda)\right], \quad k \geq 0
$$

where
$V^{(k)}(\lambda)=P_{+}\left(\lambda^{k} Q(\lambda)\right)=\sum_{j=0}^{k} Q_{j} \lambda^{k-j} \quad\left(\right.$ Lax matrix for t_{k} flow $)$

Why am I claiming that we have a Lagrangian multiform for the AKNS hierarchy?

- [Flaschka, Newell, Ratiu '83] showed that, with

$$
Q(\lambda)=\sum_{j=0}^{\infty} Q_{j} \lambda^{-j}, \quad Q_{j}=\left(\begin{array}{cc}
a_{j} & b_{j} \\
c_{j} & -a_{j}
\end{array}\right) \in \mathfrak{s l}_{2}, \quad Q_{0}=-i \sigma_{3}
$$

all (positive) AKNS flows can be be written as

$$
\partial_{t_{k}} Q(\lambda)=\left[V^{(k)}(\lambda), Q(\lambda)\right], \quad k \geq 0
$$

where

$$
V^{(k)}(\lambda)=P_{+}\left(\lambda^{k} Q(\lambda)\right)=\sum_{j=0}^{k} Q_{j} \lambda^{k-j} \quad\left(\text { Lax matrix for } t_{k} \text { flow }\right)
$$

- Zero curvature equations for the whole hierarchy hold

$$
\partial_{t_{j}} V^{(k)}(\lambda)-\partial_{t_{k}} V^{(j)}(\lambda)+\left[V^{(k)}(\lambda), V^{(j)}(\lambda)\right]=0 \quad j, k \geq 0
$$

Why am I claiming that we have a Lagrangian multiform for the AKNS hierarchy?

- [Flaschka, Newell, Ratiu '83] showed that, with

$$
Q(\lambda)=\sum_{j=0}^{\infty} Q_{j} \lambda^{-j}, \quad Q_{j}=\left(\begin{array}{cc}
a_{j} & b_{j} \\
c_{j} & -a_{j}
\end{array}\right) \in \mathfrak{s l}_{2}, \quad Q_{0}=-i \sigma_{3}
$$

all (positive) AKNS flows can be be written as

$$
\partial_{t_{k}} Q(\lambda)=\left[V^{(k)}(\lambda), Q(\lambda)\right], \quad k \geq 0
$$

where

$$
V^{(k)}(\lambda)=P_{+}\left(\lambda^{k} Q(\lambda)\right)=\sum_{j=0}^{k} Q_{j} \lambda^{k-j} \quad\left(\text { Lax matrix for } t_{k} \text { flow }\right)
$$

- Zero curvature equations for the whole hierarchy hold

$$
\partial_{t_{j}} V^{(k)}(\lambda)-\partial_{t_{k}} V^{(j)}(\lambda)+\left[V^{(k)}(\lambda), V^{(j)}(\lambda)\right]=0 \quad j, k \geq 0
$$

- $\left(V^{(1)}(\lambda), V^{(2)}(\lambda)\right)=$ Lax pair for NLS, $\left(V^{(1)}(\lambda), V^{(3)}(\lambda)\right)=\operatorname{Lax}$
- Now, introduce formal series

$$
\partial_{\mu} \equiv \sum_{k=0}^{\infty} \frac{1}{\mu^{k+1}} \partial_{t_{k}}, \quad \frac{1}{\mu-\lambda} \equiv \sum_{k=0}^{\infty} \frac{\lambda^{k}}{\mu^{k+1}}
$$

to get

$$
\partial_{t_{k}} Q(\lambda)=\left[V^{(k)}(\lambda), Q(\lambda)\right] \quad k \geq 0 \Leftrightarrow \partial_{\mu} Q(\lambda)=\left[\frac{Q(\mu)}{\mu-\lambda}, Q(\lambda)\right] .
$$

\rightarrow Generating Lax equation for integrable hierarchy.

Now we have

Theorem

$\mathscr{L}(\lambda, \mu)$ is a Lagrangian multiform for the AKNS hierarchy equations i.e.

$$
\delta d \mathscr{L}=0 \Leftrightarrow \partial_{\mu} Q(\lambda)=\left[\frac{Q(\mu)}{\mu-\lambda}, Q(\lambda)\right],
$$

and $d \mathscr{L}=0$ on these equations (closure relation). In generating form, the latter is equivalent to

$$
\partial_{\nu} \mathscr{L}(\lambda, \mu)+\partial_{\lambda} \mathscr{L}(\mu, \nu)+\partial_{\mu} \mathscr{L}(\nu, \lambda)=0 .
$$

Now we have

Theorem

$\mathscr{L}(\lambda, \mu)$ is a Lagrangian multiform for the AKNS hierarchy equations i.e.

$$
\delta d \mathscr{L}=0 \Leftrightarrow \partial_{\mu} Q(\lambda)=\left[\frac{Q(\mu)}{\mu-\lambda}, Q(\lambda)\right]
$$

and $d \mathscr{L}=0$ on these equations (closure relation). In generating form, the latter is equivalent to

$$
\partial_{\nu} \mathscr{L}(\lambda, \mu)+\partial_{\lambda} \mathscr{L}(\mu, \nu)+\partial_{\mu} \mathscr{L}(\nu, \lambda)=0 .
$$

Corollary: The generating Lax equation for the AKNS hierarchy is variational! FNR had shown the flows were Hamiltonian but no Lagrangian interpretation was known.

- Euler-Lagrange eqs for $\mathscr{L}_{i j}$ are equivalent to the corresponding zero curvature equation

$$
\partial_{t_{i}} V^{(j)}(\lambda)-\partial_{t_{j}} V^{(i)}(\lambda)+\left[V^{(j)}(\lambda), V^{(i)}(\lambda)\right]=0
$$

- Explicit calculation reproduces

$$
\begin{gathered}
\mathscr{L}_{12}=\frac{1}{2}\left(r q_{2}-q r_{2}\right)+\frac{i}{2} q_{1} r_{1}+\frac{i}{2} q^{2} r^{2} \\
\mathscr{L}_{13}=\frac{1}{2}\left(r q_{3}-q r_{3}\right)-\frac{1}{8}\left(r_{1} q_{11}-q_{1} r_{11}\right)-\frac{3 q r}{8}\left(r q_{1}-q r_{1}\right)
\end{gathered}
$$

and gives other systematically.

Reinterpretation with classical r-matrix

3. How to construct a Lagrangian multiform?

Reinterpretation with classical r-matrix
-The kernel $1 /(\mu-\lambda)$ is typical of the rational r-matrix

$$
\begin{gathered}
r_{12}(\lambda, \mu)=\frac{P_{12}}{(\mu-\lambda)} \\
P_{12}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \text { permutation operator on } \mathbb{C}^{2} \otimes \mathbb{C}^{2}
\end{gathered}
$$

Reinterpretation with classical r-matrix

- Then
$\partial_{\mu} Q(\lambda)=\left[\frac{Q(\mu)}{\mu-\lambda}, Q(\lambda)\right] \Leftrightarrow \partial_{\mu} Q_{1}(\lambda)=\left[\operatorname{Tr}_{2} r_{12}(\lambda, \mu) Q_{2}(\mu), Q_{1}(\lambda)\right]$.

Reinterpretation with classical r-matrix

- Then
$\partial_{\mu} Q(\lambda)=\left[\frac{Q(\mu)}{\mu-\lambda}, Q(\lambda)\right] \Leftrightarrow \partial_{\mu} Q_{1}(\lambda)=\left[\operatorname{Tr}_{2} r_{12}(\lambda, \mu) Q_{2}(\mu), Q_{1}(\lambda)\right]$.
- Generating function for the Lax matrices

$$
V(\lambda, \mu)=\operatorname{Tr}_{2} r_{12}(\lambda, \mu) Q_{2}(\mu)=\sum_{k=0}^{\infty} \frac{1}{\mu^{k+1}} V^{(k)}(\lambda)
$$

3. How to construct a Lagrangian multiform?

Reinterpretation with classical r-matrix

- Then
$\partial_{\mu} Q(\lambda)=\left[\frac{Q(\mu)}{\mu-\lambda}, Q(\lambda)\right] \Leftrightarrow \partial_{\mu} Q_{1}(\lambda)=\left[\operatorname{Tr}_{2} r_{12}(\lambda, \mu) Q_{2}(\mu), Q_{1}(\lambda)\right]$.
- Generating function for the Lax matrices

$$
V(\lambda, \mu)=\operatorname{Tr}_{2} r_{12}(\lambda, \mu) Q_{2}(\mu)=\sum_{k=0}^{\infty} \frac{1}{\mu^{k+1}} V^{(k)}(\lambda)
$$

- It can be shown [Avan, Caudrelier '16] that each $V^{(k)}(\lambda)$ satisfies a Sklyanin (Lie-Poisson) bracket

$$
\left\{V_{1}^{(k)}(\lambda), V_{2}^{(k)}(\mu)\right\}_{k}=\left[r_{12}(\lambda, \mu), V_{1}^{(k)}(\lambda)+V_{2}^{(k)}(\mu)\right]
$$

3. How to construct a Lagrangian multiform?

Reinterpretation with classical r-matrix

- Then
$\partial_{\mu} Q(\lambda)=\left[\frac{Q(\mu)}{\mu-\lambda}, Q(\lambda)\right] \Leftrightarrow \partial_{\mu} Q_{1}(\lambda)=\left[\operatorname{Tr}_{2} r_{12}(\lambda, \mu) Q_{2}(\mu), Q_{1}(\lambda)\right]$.
- Generating function for the Lax matrices

$$
V(\lambda, \mu)=\operatorname{Tr}_{2} r_{12}(\lambda, \mu) Q_{2}(\mu)=\sum_{k=0}^{\infty} \frac{1}{\mu^{k+1}} V^{(k)}(\lambda)
$$

- It can be shown [Avan, Caudrelier '16] that each $V^{(k)}(\lambda)$ satisfies a Sklyanin (Lie-Poisson) bracket

$$
\left\{V_{1}^{(k)}(\lambda), V_{2}^{(k)}(\mu)\right\}_{k}=\left[r_{12}(\lambda, \mu), V_{1}^{(k)}(\lambda)+V_{2}^{(k)}(\mu)\right]
$$

- Jacobi identity ensured by the Classical Yang-Baxter equation

$$
\left[r_{12}(\lambda, \mu), r_{13}(\lambda, \nu)\right]+\left[r_{12}(\lambda, \mu), r_{23}(\mu, \nu)\right]-\left[r_{13}(\lambda, \nu), r_{32}(\nu, \mu)\right]=0
$$

Liouville integrability from classical r-matrix formalism

- From

$$
\left\{V_{1}^{(k)}(\lambda), V_{2}^{(k)}(\mu)\right\}_{k}=\left[r_{12}(\lambda, \mu), V_{1}^{(k)}(\lambda)+V_{2}^{(k)}(\mu)\right]
$$

the monodromy matrix $T^{(k)}(\lambda)$ associated to $V^{(k)}(\lambda)$ satisfies Sklyanin quadratic Poisson bracket

$$
\left\{T_{1}^{(k)}(\lambda), T_{2}^{(k)}(\mu)\right\}_{k}=\left[r_{12}(\lambda, \mu), T_{1}^{(k)}(\lambda) T_{2}^{(k)}(\mu)\right]
$$

Liouville integrability from classical r-matrix formalism

- From

$$
\left\{V_{1}^{(k)}(\lambda), V_{2}^{(k)}(\mu)\right\}_{k}=\left[r_{12}(\lambda, \mu), V_{1}^{(k)}(\lambda)+V_{2}^{(k)}(\mu)\right]
$$

the monodromy matrix $T^{(k)}(\lambda)$ associated to $V^{(k)}(\lambda)$ satisfies Sklyanin quadratic Poisson bracket

$$
\left\{T_{1}^{(k)}(\lambda), T_{2}^{(k)}(\mu)\right\}_{k}=\left[r_{12}(\lambda, \mu), T_{1}^{(k)}(\lambda) T_{2}^{(k)}(\mu)\right]
$$

- Consequence

$$
\left\{\operatorname{Tr} T^{(k)}(\lambda), \operatorname{Tr} T^{(k)}(\mu)\right\}_{k}=0 \Rightarrow\left\{H_{i}, H_{j}\right\}_{k}=0
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Key observations for our AKNS generating Lagrangian multiform : beyond a single hierarchy.

1. The potential term in $\mathscr{L}(\lambda, \mu)$ has a characteristic form

$$
\operatorname{Tr}_{12}\left(r_{12}(\lambda, \mu) Q_{1}(\lambda) Q_{2}(\mu)\right)
$$

where $r_{12}(\lambda, \mu)=\frac{P_{12}}{\mu-\lambda}$ is the rational r-matrix.

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Key observations for our AKNS generating Lagrangian multiform : beyond a single hierarchy.

1. The potential term in $\mathscr{L}(\lambda, \mu)$ has a characteristic form

$$
\operatorname{Tr}_{12}\left(r_{12}(\lambda, \mu) Q_{1}(\lambda) Q_{2}(\mu)\right)
$$

where $r_{12}(\lambda, \mu)=\frac{P_{12}}{\mu-\lambda}$ is the rational r-matrix.
\rightarrow How about replacing this particular r-matrix with another (skew-symmetric) r-matrix?

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

2. The choice of expanding all the objects as formal series in $1 / \lambda$ and $1 / \mu$ is a sign that one is performing an expansion around the point at infinity.

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

2. The choice of expanding all the objects as formal series in $1 / \lambda$ and $1 / \mu$ is a sign that one is performing an expansion around the point at infinity.
\rightarrow How about considering other points in $\mathbb{C} P^{1}$?

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

2. The choice of expanding all the objects as formal series in $1 / \lambda$ and $1 / \mu$ is a sign that one is performing an expansion around the point at infinity.
\rightarrow How about considering other points in $\mathbb{C} P^{1}$?
3. The Pauli matrix in $Q_{0}=-i \sigma_{3}$ is a special choice of constant element in the underlying loop algebra of sl_{2} from which the phase space is built as a (co)adjoint orbit.

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

2. The choice of expanding all the objects as formal series in $1 / \lambda$ and $1 / \mu$ is a sign that one is performing an expansion around the point at infinity.
\rightarrow How about considering other points in $\mathbb{C} P^{1}$?
3. The Pauli matrix in $Q_{0}=-i \sigma_{3}$ is a special choice of constant element in the underlying loop algebra of sl_{2} from which the phase space is built as a (co)adjoint orbit.
\rightarrow How about considering other elements in the loop algebra to construct different phase spaces and even considering other Lie algebras than sl_{2} ?

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

- Careful implementation of these natural observations involves using the Lie algebra of \mathfrak{g}-valued adèles associated with a Lie algebra \mathfrak{g} instead of the loop algebra of sl_{2} [Semenov-Tian-Shansky '08].

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

- Careful implementation of these natural observations involves using the Lie algebra of \mathfrak{g}-valued adèles associated with a Lie algebra \mathfrak{g} instead of the loop algebra of sl_{2} [Semenov-Tian-Shansky '08].
- In a nutshell, with $\lambda_{a}=\lambda-a$ for $a \in \mathbb{C}$ and $\lambda_{\infty}=\frac{1}{\lambda}$,

$$
\mathcal{A}_{\boldsymbol{\lambda}}(\mathfrak{g}):=\coprod_{a \in \mathbb{C} P^{1}} \mathfrak{g} \otimes \mathbb{C}\left(\left(\lambda_{a}\right)\right),
$$

An element $\boldsymbol{X}(\boldsymbol{\lambda})=\left(X^{a}\left(\lambda_{a}\right)\right)_{a \in \mathbb{C} P^{1}}$ of this algebra consist of tuples with all but finitely many of the formal Laurent series $X^{a}\left(\lambda_{a}\right) \in \mathfrak{g} \otimes \mathbb{C}\left(\left(\lambda_{a}\right)\right)$ being Taylor series in λ_{a}, i.e. there exists a finite subset $S \subset \mathbb{C} P^{1}$ such that $X^{a}\left(\lambda_{a}\right) \in \mathfrak{g} \otimes \mathbb{C} \llbracket \lambda_{a} \rrbracket$ for every $a \in \mathbb{C} \backslash S$.

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Schematic implementation of the generalisation

$$
\mathfrak{S l}_{2} \quad \rightarrow \quad \mathfrak{g}
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Schematic implementation of the generalisation

$\mathfrak{s l}_{2}$	\rightarrow	\mathfrak{g}
∞	\rightarrow	$S \subset \mathbb{C} P^{1}$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Schematic implementation of the generalisation

$$
\begin{array}{ccc}
\mathfrak{s l}_{2} & \rightarrow & \mathfrak{g} \\
\infty & \rightarrow & S \subset \mathbb{C} P^{1} \\
\text { times } t_{n} & \rightarrow & \text { times } t_{n}^{a}, \quad a \in S
\end{array}
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Schematic implementation of the generalisation

$$
\begin{array}{clc}
\mathfrak{s l}_{2} & \rightarrow & \mathfrak{g} \\
\infty & \rightarrow & S \subset \mathbb{C} P^{1} \\
\text { times } t_{n} & \rightarrow & \text { times } t_{n}^{a}, \quad a \in S \\
\partial_{\mu}=\sum_{k=0}^{\infty} \frac{1}{\mu^{k+1}} \partial_{t_{k}} & \rightarrow & \mathcal{D}_{\lambda_{a}}=\sum_{n} \lambda_{a}^{n} \partial_{t_{n}^{a}}
\end{array}
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Schematic implementation of the generalisation

$$
\begin{array}{clc}
\mathfrak{s l} l_{2} & \rightarrow & \mathfrak{g} \\
\infty & \rightarrow & S \subset \mathbb{C} P^{1} \\
\text { times } t_{n} & \rightarrow & \text { times } t_{n}^{a}, \quad a \in S \\
\partial_{\mu}=\sum_{k=0}^{\infty} \frac{1}{\mu^{k+1}} \partial_{t_{k}} & \rightarrow & \mathcal{D}_{\lambda_{a}}=\sum_{n} \lambda_{a}^{n} \partial_{t_{n}^{a}} \\
Q(\lambda) & \rightarrow & \boldsymbol{Q}(\boldsymbol{\lambda})=\left(Q^{a}\left(\lambda_{a}\right)\right)_{a \in \mathbb{C} P^{1}} \\
\phi(\lambda) & \rightarrow & \boldsymbol{\phi}(\boldsymbol{\lambda})=\left(\phi^{a}\left(\lambda_{a}\right)\right)_{a \in \mathbb{C} P^{1}}
\end{array}
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Schematic implementation of the generalisation

$$
\begin{array}{ccc}
\mathfrak{s l}_{2} & \rightarrow & \mathfrak{g} \\
\infty & \rightarrow & S \subset \mathbb{C} P^{1} \\
\text { times } t_{n} & \rightarrow & \text { times } t_{n}^{a}, \quad a \in S \\
\partial_{\mu}=\sum_{k=0}^{\infty} \frac{1}{\mu^{k+1}} \partial_{t_{k}} & \rightarrow & \mathcal{D}_{\lambda_{a}}=\sum_{n} \lambda_{a}^{n} \partial_{t_{n}^{a}} \\
Q(\lambda) & \rightarrow & \boldsymbol{Q}(\boldsymbol{\lambda})=\left(Q^{a}\left(\lambda_{a}\right)\right)_{a \in \mathbb{C} P^{1}} \\
\phi(\lambda) & \rightarrow & \begin{array}{c}
\boldsymbol{\phi}(\boldsymbol{\lambda})=\left(\phi^{a}\left(\lambda_{a}\right)\right)_{a \in \mathbb{C}} P^{1}
\end{array} \\
Q_{0}=-i \sigma_{3} & \rightarrow & \left(\iota_{\boldsymbol{\lambda}} F(\lambda)\right)_{-} \text {collection of principal parts } \\
& & \begin{array}{c}
\text { of } \mathfrak{g} \text {-valued rational function } F(\lambda) \\
\text { with poles in finite set } S
\end{array}
\end{array}
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Schematic implementation of the generalisation

$$
\begin{array}{clc}
\mathfrak{s l}_{2} & \rightarrow & \mathfrak{g} \\
\infty & \rightarrow & S \subset \mathbb{C} P^{1} \\
\text { times } t_{n} & \rightarrow & \text { times } t_{n}^{a}, a \in S \\
\partial_{\mu}=\sum_{k=0}^{\infty} \frac{1}{\mu^{k+1}} \partial_{t_{k}} & \rightarrow & \mathcal{D}_{\lambda_{a}}=\sum_{n} \lambda_{a}^{n} \partial_{t_{n}^{a}} \\
Q(\lambda) & \rightarrow & \boldsymbol{Q}(\boldsymbol{\lambda})=\left(Q^{a}\left(\lambda_{a}\right)\right)_{a \in \mathbb{C} P^{1}} \\
\phi(\lambda) & \rightarrow & \phi(\boldsymbol{\lambda})=\left(\phi^{a}\left(\lambda_{a}\right)\right)_{a \in \mathbb{C} P^{1}} \\
Q_{0}=-i \sigma_{3} & \rightarrow & \left(\iota_{\lambda} F(\lambda)\right)_{-} \text {collection of principal parts } \\
\text { of } \mathfrak{g} \text {-valued rational function } F(\lambda) \\
\text { with poles in finite set } S
\end{array}
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Schematic implementation of the generalisation

$$
\begin{array}{clc}
\mathfrak{s l}_{2} & \rightarrow & \mathfrak{g} \\
\infty & \rightarrow & S \subset \mathbb{C} P^{1} \\
\text { times } t_{n} & \rightarrow & \text { times } t_{n}^{a}, \quad a \in S \\
\partial_{\mu}=\sum_{k=0}^{\infty} \frac{1}{\mu^{k+1}} \partial_{t_{k}} & \rightarrow & \mathcal{D}_{\lambda_{a}}=\sum_{n} \lambda_{a}^{n} \partial_{t_{n}^{a}} \\
Q(\lambda) & \rightarrow & \boldsymbol{Q}(\boldsymbol{\lambda})=\left(Q^{a}\left(\lambda_{a}\right)\right)_{a \in \mathbb{C} P^{1}} \\
\phi(\lambda) & \rightarrow & \boldsymbol{\phi}(\boldsymbol{\lambda})=\left(\phi^{a}\left(\lambda_{a}\right)\right)_{a \in \mathbb{C} P^{1}} \\
Q_{0}=-i \sigma_{3} & \rightarrow & \left(\iota_{\lambda} F(\lambda)\right)_{-} \text {collection of principal parts } \\
& & \text { of } \mathfrak{g} \text {-valued rational function } F(\lambda) \\
\text { with poles in finite set } S \\
\frac{P_{12}}{\mu-\lambda} & \rightarrow & \text { any skew-symmetric } r \text {-matrix } r_{12}(\lambda, \mu) \\
\mathscr{L}(\lambda, \mu) & \rightarrow & \mathscr{L}(\boldsymbol{\lambda}, \boldsymbol{\mu})=\text { collection of } \mathscr{L}^{a, b}\left(\lambda_{a}, \mu_{b}\right)_{\bar{\Xi}}
\end{array}
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

- Elementary Lagrangians computed as

$$
\mathscr{L}_{m, n}^{a, b}:=\operatorname{res}_{a}^{\lambda} \operatorname{res}_{b}^{\mu} \mathscr{L}^{a, b}\left(\lambda_{a}, \mu_{b}\right) \lambda^{-m-1} d \lambda \mu^{-n-1} d \mu
$$

- Elementary Lax matrices $V_{m}^{a}(\lambda)$ similarly computed from

$$
\boldsymbol{V}(\lambda ; \boldsymbol{\mu}):=\operatorname{Tr}_{2}\left(\iota_{\boldsymbol{\mu}} r_{12}(\lambda, \mu) \boldsymbol{Q}_{2}(\boldsymbol{\mu})\right)
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

- Elementary Lagrangians computed as

$$
\mathscr{L}_{m, n}^{a, b}:=\operatorname{res}_{a}^{\lambda} \operatorname{res}_{b}^{\mu} \mathscr{L}^{a, b}\left(\lambda_{a}, \mu_{b}\right) \lambda^{-m-1} d \lambda \mu^{-n-1} d \mu
$$

- Elementary Lax matrices $V_{m}^{a}(\lambda)$ similarly computed from

$$
\boldsymbol{V}(\lambda ; \boldsymbol{\mu}):=\operatorname{Tr}_{2}\left(\iota_{\boldsymbol{\mu}} r_{12}(\lambda, \mu) \boldsymbol{Q}_{2}(\boldsymbol{\mu})\right)
$$

- Key message: Euler-Lagrange eqs for $\mathscr{L}_{m, n}^{a, b}$ equivalent to zero curvature equation for times t_{m}^{a}, t_{n}^{b}

$$
\partial_{t_{n}^{b}} V_{m}^{a}(\lambda)-\partial_{t_{m}^{a}} V_{n}^{b}(\lambda)+\left[V_{m}^{a}(\lambda), V_{n}^{b}(\lambda)\right]=0
$$

\rightarrow Full integrable hierarchy in variational form.

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Main results

Theorem

The generating Lax equation

$$
\begin{equation*}
\mathcal{D}_{\boldsymbol{\mu}} \boldsymbol{Q}_{1}(\boldsymbol{\lambda})=\left[\operatorname{Tr}_{2}\left(\boldsymbol{\iota}_{\boldsymbol{\lambda}} \boldsymbol{\iota}_{\boldsymbol{\mu}} r_{12}(\lambda, \mu) \boldsymbol{Q}_{2}(\boldsymbol{\mu})\right), \boldsymbol{Q}_{1}(\boldsymbol{\lambda})\right] \tag{1}
\end{equation*}
$$

is variational: it derives from the multiform $E L$ eqs for $\mathscr{L}(\boldsymbol{\lambda}, \boldsymbol{\mu})$. The closure relation in generating form

$$
\mathcal{D}_{\boldsymbol{\nu}} \mathscr{L}(\boldsymbol{\lambda}, \boldsymbol{\mu})+\mathcal{D}_{\boldsymbol{\mu}} \mathscr{L}(\boldsymbol{\nu}, \boldsymbol{\lambda})+\mathcal{D}_{\boldsymbol{\lambda}} \mathscr{L}(\boldsymbol{\mu}, \boldsymbol{\nu})=0
$$

holds as a consequence of the CYBE equation.

Theorem

The flows (1) on the Lie algebra of \mathfrak{g}-valued adèles commute as a consequence of the CYBE

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Theorem

The CYBE also ensures that the generating zero curvature equation holds

$$
\mathcal{D}_{\boldsymbol{\nu}} \boldsymbol{V}(\lambda ; \boldsymbol{\mu})-\mathcal{D}_{\boldsymbol{\mu}} \boldsymbol{V}(\lambda ; \boldsymbol{\nu})+[\boldsymbol{V}(\lambda ; \boldsymbol{\mu}), \boldsymbol{V}(\lambda ; \boldsymbol{\nu})]=0
$$

where

$$
\boldsymbol{V}(\lambda ; \boldsymbol{\mu}):=\operatorname{Tr}_{2}\left(\iota_{\boldsymbol{\mu}} r_{12}(\lambda, \mu) \boldsymbol{Q}_{2}(\boldsymbol{\mu})\right)
$$

generates the local Lax matrices as

$$
\begin{aligned}
V^{b}\left(\lambda ; \mu_{b}\right) & =\sum_{n=-N_{b}}^{\infty} V_{n}^{b}(\lambda) \mu_{b}^{n}, \quad b \in \mathbb{C} \\
V^{\infty}\left(\lambda ; \mu_{\infty}\right) & =\sum_{n=-N_{\sim}}^{\infty} V_{n}^{\infty}(\lambda) \mu_{\infty}^{n+k+1}
\end{aligned}
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Procedure to get examples.
Choose:
(i) a skew-symmetric r-matrix (rational or trig for us),
(ii) an effective divisor $\mathcal{D}:=\sum_{a \in S} N_{a} a$, with support given by a finite subset $S \subset \mathbb{C} P^{1}$,
(ii) a Lie algebra \mathfrak{g} which for simplicity we take to be either gl_{N} or sl_{N},
(iv) a \mathfrak{g}-valued rational function $F(\lambda) \in R_{\lambda}(\mathfrak{g})$ with poles divisor $(F)_{\infty}=\mathcal{D}$, i.e. with a pole of order N_{a} at each point $a \in S$.

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Recovering the original AKNS example.
Fix the data as

$$
S=\{\infty\}, \quad N_{\infty}=0, \quad \mathfrak{g}=\mathrm{sl}_{2}, \quad F(\lambda)=-i \sigma_{3}
$$

and choose the rational r-matrix $r_{12}(\lambda, \mu)=\frac{P_{12}}{\mu-\lambda}$.

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Sine-Gordon hierarchy
For the hierarchy of the sine-Gordon equation (in light-cone coords)

$$
u_{x y}+\sin u=0
$$

we fix $S=\{0, \infty\}, N_{0}=1=N_{\infty}, \mathfrak{g}=\mathrm{sl}_{2}$,

$$
F(\lambda)=\frac{i}{2}\left(\frac{1}{\lambda} \sigma_{+}+\sigma_{-}-\sigma_{+}-\lambda \sigma_{-}\right)
$$

and we choose the trigonometric r-matrix

$$
r_{12}^{\mathrm{trig}}(\lambda, \mu)=\frac{1}{2}\left(P_{12}^{+}-P_{12}^{-}+\frac{\mu+\lambda}{\mu-\lambda} P_{12}\right)
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

We can derive all elementary Lagrangians. We find

$$
\begin{gathered}
\mathscr{L}_{\mathrm{sG}} \equiv \mathscr{L}_{00}^{0, \infty}=-\frac{1}{4} u_{x} u_{y}-\frac{1}{2} \cos u \\
\mathscr{L}_{\mathrm{mKdV}} \equiv \mathscr{L}_{01}^{\infty, \infty}=\frac{1}{4} u_{x} u_{z}+\frac{1}{16} u_{x}^{4}-\frac{1}{4} u_{x x}^{2}-\frac{i}{4} \partial_{x}\left(\frac{1}{6} u_{x}^{3}+i u_{x} u_{x x}\right) \\
\mathscr{L}_{\text {mixed }} \equiv \mathscr{L}_{01}^{0, \infty}= \\
-\quad-\frac{1}{4} u_{y} u_{z}-\frac{1}{2} u_{x x}\left(u_{x y}+\sin u\right)+\frac{1}{4} u_{x}^{2} \cos u \\
-\frac{i}{4} \partial_{y}\left(\frac{1}{6} u_{x}^{3}+i u_{x} u_{x x}\right)
\end{gathered}
$$

Recover the results of [Suris '16].

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Hierarchies of Zakharov-Mikhailov type
Correspond to Lax matrices of Zakharov-Shabat type: rational Lax matrices with prescribed pole structures.

- In our setup, choose the following data

$$
\begin{gathered}
S=\left\{a_{1}, \ldots, a_{P}\right\} \subset \mathbb{C}, \quad P>0, \quad \mathfrak{g}=\mathrm{gl}_{N} \\
F(\lambda)=-\sum_{i=1}^{P} \sum_{r=0}^{n_{i}} \frac{A_{i r}}{\left(\lambda-a_{i}\right)^{r+1}} .
\end{gathered}
$$

- Each $A_{i r} \in \mathrm{gl}_{N}$ is a non-dynamical constant matrix.
- r-matrix can be the rational (original Zakharov-Mikhailov case) or trigonometric (new models). Even in rational case, obtain full hierarchy, not just a single model/level.

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Most famous example: Faddeev-Reshetikhin version of Principal chiral model

- 2 simple poles $a, b=-a$ in S,

$$
F(\lambda)=-\frac{A}{(\lambda-a)}-\frac{B}{(\lambda+a)}
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Most famous example: Faddeev-Reshetikhin version of Principal chiral model

- 2 simple poles $a, b=-a$ in S,

$$
F(\lambda)=-\frac{A}{(\lambda-a)}-\frac{B}{(\lambda+a)}
$$

- Lowest elementary Lax matrices for times $t_{-1}^{a} \equiv \xi, t_{-1}^{-a} \equiv \eta$

$$
V_{-1}^{a}(\lambda)=\frac{\phi A \phi^{-1}}{\lambda-a} \equiv \frac{J_{0}}{\lambda-a}, \quad V_{-1}^{b}(\lambda)=\frac{\psi B \psi^{-1}}{\lambda+a} \equiv \frac{J_{1}}{\lambda+a}
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Most famous example: Faddeev-Reshetikhin version of Principal chiral model

- 2 simple poles $a, b=-a$ in S,

$$
F(\lambda)=-\frac{A}{(\lambda-a)}-\frac{B}{(\lambda+a)}
$$

- Lowest elementary Lax matrices for times $t_{-1}^{a} \equiv \xi, t_{-1}^{-a} \equiv \eta$

$$
V_{-1}^{a}(\lambda)=\frac{\phi A \phi^{-1}}{\lambda-a} \equiv \frac{J_{0}}{\lambda-a}, \quad V_{-1}^{b}(\lambda)=\frac{\psi B \psi^{-1}}{\lambda+a} \equiv \frac{J_{1}}{\lambda+a}
$$

- Zero curvature equations

$$
\partial_{\eta} J_{0}+\frac{1}{2 a}\left[J_{0}, J_{1}\right]=0, \quad \partial_{\xi} J_{1}+\frac{1}{2 a}\left[J_{0}, J_{1}\right]=0 .
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

- We get the lowest elementary Lagrangian as

$$
\mathscr{L}_{-1-1}^{a b}=\operatorname{Tr}\left(\phi^{-1} \partial_{\eta} \phi A-\psi^{-1} \partial_{\xi} \psi B-\frac{\phi A \phi^{-1} \psi B \psi^{-1}}{2 a}\right) .
$$

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Coupling models/hierarchies

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Coupling models/hierarchies

- Procedure produces new models/hierarchies that are automatically integrable. NB: not the same as taking combination of flows within a hierarchy.

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

Coupling models/hierarchies

- Procedure produces new models/hierarchies that are automatically integrable. NB: not the same as taking combination of flows within a hierarchy.
- Example: couple nonlinear Schrödinger to Faddeev-Reshetikhin.

$$
\begin{gathered}
S=\{a,-a, \infty\}, \quad a \in \mathbb{C}^{\times}, N_{a}=N_{b}=1, \quad N_{\infty}=0, \quad \mathfrak{g}=\mathrm{sl}_{2} \\
F(\lambda)=-i \alpha \sigma_{3}+\frac{A}{\lambda-a}+\frac{B}{\lambda+a} \equiv \alpha F^{A K N S}(\lambda)+F^{F R}(\lambda)
\end{gathered}
$$

where A, B are constant sl_{2} matrices.

- α couples the two theories: $\alpha=0$ gives a pure FR theory while sending α to infinity produces a pure AKNS hierarchy.

4. A generating Lagrangian multiform for ultralocal field theories and CYBE

- Extract model at lowest level. Can compute Lax matrices and zero curvature equations and Lagrangian that produces those equations.

$$
\begin{gathered}
\partial_{\eta} J_{0}+\frac{1}{2 a}\left[J_{0}, J_{1}\right]+\alpha\left[J_{0}, V_{N L S}(a)\right]=0, \\
\partial_{\xi} J_{1}+\frac{1}{2 a}\left[J_{0}, J_{1}\right]-\alpha\left[U_{N L S}(-a), J_{1}\right]=0, \\
\alpha \partial_{\xi} Q_{1}+i \alpha^{2}\left[\sigma_{3}, Q_{2}\right]+i \alpha\left[J_{0}, \sigma_{3}\right]=0, \\
\alpha \partial_{\eta} Q_{1}-\alpha \partial_{\xi} Q_{2}+\alpha^{2}\left[Q_{1}, Q_{2}\right]-i a \alpha\left[J_{0}, \sigma_{3}\right]-i \alpha\left[\sigma_{3}, J_{1}\right]+\alpha\left[J_{0}, Q_{1}\right]=0 .
\end{gathered}
$$

- If needed, can compute all higher levels in hierarchy.

5. Conclusions

- Lagrangian multiform theory: a purely Lagrangian approach to classical integrability, from a generalised variational principle.

5. Conclusions

- Lagrangian multiform theory: a purely Lagrangian approach to classical integrability, from a generalised variational principle.
- The problem of constructing efficiently Lagrangian multiforms led to several developments:
- Lagrangian multiform theory: a purely Lagrangian approach to classical integrability, from a generalised variational principle.
- The problem of constructing efficiently Lagrangian multiforms led to several developments:

1. We brought together the theory of Lagrangian multiforms and of the classical r-matrix and CYBE for the first time. \rightarrow Conceptual by-products: (i) CYBE acquires a variational interpretation for first time; (ii) closure relation established as fundamental criterion for "Lagrangian integrability".

- Lagrangian multiform theory: a purely Lagrangian approach to classical integrability, from a generalised variational principle.
- The problem of constructing efficiently Lagrangian multiforms led to several developments:

1. We brought together the theory of Lagrangian multiforms and of the classical r-matrix and CYBE for the first time. \rightarrow Conceptual by-products: (i) CYBE acquires a variational interpretation for first time; (ii) closure relation established as fundamental criterion for "Lagrangian integrability".
2. Constructive approach to derive (not guess), from minimal (algebraic) input, Lax pairs and Lagrangians for corresponding zero curvature equations. Applicable to large variety of integrable hierarchies, old and new.

5. outlook, open questions

Many open questions.
Classical level

Many open questions.
Classical level

- Connection between our results and $4 d$ Chern-Simons construction of integrable field theories. Extend results from [Caudrelier, Stoppato, Vicedo '21] to entire hierarchies encoded in our generating Lagrangian multiform?

Many open questions.
Classical level

- Connection between our results and $4 d$ Chern-Simons construction of integrable field theories. Extend results from [Caudrelier, Stoppato, Vicedo '21] to entire hierarchies encoded in our generating Lagrangian multiform?
- What about non ultralocal integrable theories? How to relate with other important construction of non ultralocal integrable theories via affine Gaudin models?

Quantum level

5. outlook, open questions

Many open questions.
Classical level

- Connection between our results and $4 d$ Chern-Simons construction of integrable field theories. Extend results from [Caudrelier, Stoppato, Vicedo '21] to entire hierarchies encoded in our generating Lagrangian multiform?
- What about non ultralocal integrable theories? How to relate with other important construction of non ultralocal integrable theories via affine Gaudin models?

Quantum level

- Covariant quantization of integrable field theories? Relation to quantum R matrix and quantum YBE?

THANK YOU!

4. A generating Lagrangian multiform for ultralocal

 field theories and CYBEIn formulas,

$$
\mathscr{L}(\boldsymbol{\lambda}, \boldsymbol{\mu}):=\boldsymbol{K}(\boldsymbol{\lambda}, \boldsymbol{\mu})-\boldsymbol{U}(\boldsymbol{\lambda}, \boldsymbol{\mu})=\left(\mathscr{L}^{a, b}\left(\lambda_{a}, \mu_{b}\right)\right)_{a, b \in \mathbb{C} P^{1}}
$$

Kinetic and potential terms

$$
\begin{aligned}
& \boldsymbol{K}(\boldsymbol{\lambda}, \boldsymbol{\mu})=\operatorname{Tr}\left(\boldsymbol{\phi}(\boldsymbol{\lambda})^{-1} \mathcal{D}_{\boldsymbol{\mu}} \boldsymbol{\phi}(\boldsymbol{\lambda})\left(\boldsymbol{\iota}_{\boldsymbol{\lambda}} F(\lambda)\right)_{-}\right) \\
&-\operatorname{Tr}\left(\boldsymbol{\phi}(\boldsymbol{\mu})^{-1} \mathcal{D}_{\boldsymbol{\lambda}} \boldsymbol{\phi}(\boldsymbol{\mu})\left(\boldsymbol{\iota}_{\boldsymbol{\mu}} F(\mu)\right)_{-}\right) \\
& \\
& \boldsymbol{U}(\boldsymbol{\lambda}, \boldsymbol{\mu})=\frac{1}{2} \operatorname{Tr}_{12}\left(\left(\boldsymbol{\iota}_{\boldsymbol{\lambda}} \iota_{\mu}+\iota_{\boldsymbol{\mu}} \iota_{\boldsymbol{\lambda}}\right) r_{12}(\lambda, \mu) \boldsymbol{Q}_{1}(\boldsymbol{\lambda}) \boldsymbol{Q}_{2}(\boldsymbol{\mu})\right)
\end{aligned}
$$

Generating Lax equation reads

$$
\begin{equation*}
\mathcal{D}_{\boldsymbol{\mu}} \boldsymbol{Q}_{1}(\boldsymbol{\lambda})=\left[\operatorname{Tr}_{2}\left(\boldsymbol{\iota}_{\boldsymbol{\lambda}} \boldsymbol{\iota}_{\boldsymbol{\mu}} r_{12}(\lambda, \mu) \boldsymbol{Q}_{2}(\boldsymbol{\mu})\right), \boldsymbol{Q}_{1}(\boldsymbol{\lambda})\right] . \tag{2}
\end{equation*}
$$

derives from multiform EL eqs.

