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General context

Integrable classical field theories in 1 + 1 dimensions

• Can be viewed as Lagrangian systems associated to an
action with Lagrangian (density) L [u]

S[u] =

∫
σ

L [u]dx ∧ dt

NB: σ is a two-dimensional manifold and L [u]dx ∧ dt is a
volume form.

• Can also be viewed as (infinite dimensional) Hamiltonian
systems.

H[u] =

∫
γ
H[u] dx , γ ⊆ R
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General context: Lagrange vs Hamilton?

• (Liouville) integrability: e.g. countable number of charges in
involution defining compatible flows on the fields of the theory.

{Hi, Hj} = 0 , ∂ti = {·, Hi} , [∂ti , ∂tj ] = 0

→ natural to think of an integrable systems as being part of an
integrable hierarchy: The physical Hamiltonian is part of an
infinite family H1, H2, . . . . The physical time is part of a
hierarchy of times t1, t2, . . . .

• Integrability, both classically and quantum mechanically, has
been studied overwhelmingly from the Hamiltonian point of
view (Liouville theorem, bi-Hamiltonian systems, Quantum
Inverse Scattering method, etc.)
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General context: Lagrange vs Hamilton?

Joseph-Louis

Lagrange

(1736-1813)

Which is more

fundamental?
William Rowan Hamilton

(1805-65)

• Question: how to capture/define (classical) integrability
solely from the Lagrangian point of view? There is only one
Lagrangian, as opposed to a hierarchy of Hamiltonians.
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Plan

1. Variational criterion for integrability: Lagrangian multiforms

2. Lagrangian multiforms: key equations, properties, examples

3. How to construct a Lagrangian multiform?
a. Key example: Ablowitz-Kaup-Newell-Segur hierarchy
b. Important observations leading to generalisation

4. A generating Lagrangian multiform for ultralocal field
theories and CYBE

5. Conclusions, outlook, open questions
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1. Variational criterion for integrability: Lagrangian
multiforms

Back to the question: how to define (classical) integrability
from the Lagrangian point of view?

• Answer originally proposed in [Lobb, Nijhoff ’09] (in the
discrete setting). Presented here for field theories.

1. Replace the Lagrangian volume form (denote x, t by t1, t2)

L [u] = L12[u]dt1 ∧ dt2

by a Lagrangian multiform

L [u] =
∑
i<j

Lij [u]dti ∧ dtj

→ a two-form on a higher dimensional manifold M whose
coordinates are the “times” ti of the hierarchy.
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1. Variational criterion for integrability: Lagrangian
multiforms

2. Define an associated action

S[u, σ] =

∫
σ

∑
i<j

Lij [u] dti ∧ dtj .

and a generalised variational principle:

(i) A field u is critical for L [u] if it is a critical configuration of
S[u, σ] for “arbitrary” surface σ in M.

(ii) On critical configurations, the value of the action S[u, σ] is
independent of σ: it is stationary with respect to local
variations of the surface σ.
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2. Lagrangian multiforms: key equations and properties

Intuition behind the proposed principle: The arbitrariness of σ
implements variationally the idea of commuting Hamiltonian
vectors fields in continuous setting.

• Consequences of the generalised principle on simplest case:

L [u] = L12[u]dt1 ∧ dt2 + L13[u]dt1 ∧ dt3 + L23[u]dt2 ∧ dt3

with

Lij [u] = Lij(u, ut1 , ut2 , ut3) (first order Lagrangians)
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2. Lagrangian multiforms: key equations and properties

If σ = (t1, t2)-plane then

S[u, σ] =

∫
R2

L12(u, ut1 , ut2 , ut3)dt1 ∧ dt2

and

δuS[u, σ] =

∫
R2

(
∂L12

∂u
− ∂t1

∂L12

∂ut1
− ∂t2

∂L12

∂ut2

)
δu ∧ dt1 ∧ dt2

+

∫
R2

(
∂t1

(
∂L12

∂ut1
δu

)
+ ∂t2

(
∂L12

∂ut2
δu

))
dt1 ∧ dt2

+

∫
R2

(
∂L12

∂ut3
δut3

)
dt1 ∧ dt2
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2. Lagrangian multiforms: key equations and properties

• Hence, one obtains:

1 Euler-Lagrange equations for L12:
δL12
δu = 0;

2 boundary terms → 0;

3 New structural equation → ∂L12
∂ut3

= 0.

• If σ = σ1 ∪ σ2 (union of two half-planes) then

S[u, σ] =

∫
σ1

L12dt1 ∧ dt2 +

∫
σ2

L13dt1 ∧ dt3
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2. Lagrangian multiforms: key equations and properties

• Similar derivation gives

1 Euler-Lagrange equations for L12 and L13;

2 ∂L12
∂ut3

= 0 as before and ∂L13
∂ut2

= 0;

3 New structural equation

∂L12

∂ut2
+
∂L13

∂ut3
= 0
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2. Lagrangian multiforms: key equations and properties

Summary: generalised variational principle gives the
multi-time Euler-Lagrange equations for the Lagrangian
coefficients Lij of L [u]. [Suris, Vermeeren ’15]

• General structure:

1 Euler-Lagrange equations for each Lij ;

2 Structural equations on Lij , called “corner equations” →
select the Lij and good candidates for integrable theories.

• Multi-time Euler-Lagrange equations rederived and
generalised in several ways, e.g. [Sleigh, Nijhoff, Caudrelier ’20].
• Outcome: compact formulation achieved using the variational
bicomplex formalism

δdL [u] = 0

Several advantages: coordinates independent formulation, valid
for d-form d = 1, 2, 3, . . . , for higher order Lagrangians

Vincent Caudrelier Yau Centre seminar



2. Lagrangian multiforms: key equations and properties

Summary: generalised variational principle gives the
multi-time Euler-Lagrange equations for the Lagrangian
coefficients Lij of L [u]. [Suris, Vermeeren ’15]

• General structure:

1 Euler-Lagrange equations for each Lij ;

2 Structural equations on Lij , called “corner equations” →
select the Lij and good candidates for integrable theories.

• Multi-time Euler-Lagrange equations rederived and
generalised in several ways, e.g. [Sleigh, Nijhoff, Caudrelier ’20].

• Outcome: compact formulation achieved using the variational
bicomplex formalism

δdL [u] = 0

Several advantages: coordinates independent formulation, valid
for d-form d = 1, 2, 3, . . . , for higher order Lagrangians

Vincent Caudrelier Yau Centre seminar



2. Lagrangian multiforms: key equations and properties

Summary: generalised variational principle gives the
multi-time Euler-Lagrange equations for the Lagrangian
coefficients Lij of L [u]. [Suris, Vermeeren ’15]

• General structure:

1 Euler-Lagrange equations for each Lij ;

2 Structural equations on Lij , called “corner equations” →
select the Lij and good candidates for integrable theories.

• Multi-time Euler-Lagrange equations rederived and
generalised in several ways, e.g. [Sleigh, Nijhoff, Caudrelier ’20].
• Outcome: compact formulation achieved using the variational
bicomplex formalism

δdL [u] = 0

Several advantages: coordinates independent formulation, valid
for d-form d = 1, 2, 3, . . . , for higher order Lagrangians

Vincent Caudrelier Yau Centre seminar



2. Lagrangian multiforms: key equations and properties

Intuition behind the second requirement

• On solutions, the action is stationary with respect to local
variations of the surface σ:

S[u, σ] = S[u, σ
′
]⇒

∫
∂B
L[u] = 0⇒

∫
B
dL[u] = 0

→ Closure relation: dL [u] = 0 on-shell.

With
L [u] =

∑
i<j

Lij [u]dti ∧ dtj

dL [u] =
∑
i<j<k

(
∂tkLij [u] + ∂tjLki[u] + ∂tiLjk[u]

)
dti ∧ dtj ∧ dtk

so, in components,

∂tkLij [u] + ∂tjLki[u] + ∂tiLjk[u] = 0
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2. Lagrangian multiforms: key equations and properties

Why is it a good criterion?

• It works!

Many examples of integrable hierarchies (1,2 even 3D) are now
constructed which fulfill all the requirements: the theory is not
empty and captures integrability. See examples and
construction below.

• δdL = 0 linked to commutativity of Hamiltonian flows and
closure relation linked to known criterion {Hi, Hj} = 0 (for
certain Lagrangian 1-forms and 2-forms [Suris ’13; Vermeeren ’21])

• The main topic today: link to classical r-matrix and classical
Yang-Baxter equation.
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3. How to construct a Lagrangian multiform?

• Problem: how to get the Lagrangians Lij for all i, j ≥ 0?

• In principle, L1n not so hard: Legendre transform the known
hierarchy of Hamiltonians Hn. The other Lij are the main
problem.

• Technical and difficult problem: several methods (brute force,
variational symmetries, discrete to continuum). Results
essentially for a finite number of levels in the hierarchy [Suris,

Vermeeren ’16; Sleigh, Nijhoff, Caudrelier ’19; Vermeeren ’19; Petrera,

Vermeeren ’19]

Vincent Caudrelier Yau Centre seminar



3. How to construct a Lagrangian multiform?

• Problem: how to get the Lagrangians Lij for all i, j ≥ 0?

• In principle, L1n not so hard: Legendre transform the known
hierarchy of Hamiltonians Hn. The other Lij are the main
problem.

• Technical and difficult problem: several methods (brute force,
variational symmetries, discrete to continuum). Results
essentially for a finite number of levels in the hierarchy [Suris,

Vermeeren ’16; Sleigh, Nijhoff, Caudrelier ’19; Vermeeren ’19; Petrera,

Vermeeren ’19]

Vincent Caudrelier Yau Centre seminar



3. How to construct a Lagrangian multiform?

• Problem: how to get the Lagrangians Lij for all i, j ≥ 0?

• In principle, L1n not so hard: Legendre transform the known
hierarchy of Hamiltonians Hn. The other Lij are the main
problem.

• Technical and difficult problem: several methods (brute force,
variational symmetries, discrete to continuum). Results
essentially for a finite number of levels in the hierarchy [Suris,

Vermeeren ’16; Sleigh, Nijhoff, Caudrelier ’19; Vermeeren ’19; Petrera,

Vermeeren ’19]

Vincent Caudrelier Yau Centre seminar



3. How to construct a Lagrangian multiform?

Example: Nonlinear Schrödinger and modified KdV levels in
Ablowitz-Kaup-Newell-Segur hierarchy

q2 −
i

2
q11 + iq2r = 0, r2 +

i

2
r11 − iqr2 = 0,

q3 +
1

4
q111 −

3

2
qrq1 = 0, r3 +

1

4
r111 −

3

2
qrr1 = 0 .

Lagrangians

L12 =
1

2
(rq2 − qr2) +

i

2
q1r1 +

i

2
q2r2

L13 =
1

2
(rq3 − qr3)−

1

8
(r1q11 − q1r11)−

3qr

8
(rq1 − qr1)

L23 =
1

4
(q2r11 − r2q11)− i

2
(q3r1 + r3q1) +

1

8
(q1r12 − r1q12)

+
3qr

8
(qr2 − rq2)− i

8
q11r11 +

i

4
qr(qr11 + rq11)

− i

8
(qr1 − rq1)2 − i

2
q3r3.
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3. How to construct a Lagrangian multiform?

Our method: Confluence of several ideas

1) Generating formalism and “compounding the hierarchy” idea
advocated e.g. in [Nijhoff ’83] in the Lagrangian formalism.

2) Zakharov-Mikhailov insighful result on Lagrangian
formulation of zero curvature equations for rational Lax pairs.
[Zakharov, Mikhailov ’80]

3) Flaschka-Newell-Ratiu (FNR) construction of the
Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy [Flaschka, Newell,

Ratiu ’83] and the comparison of their generating function for
conservation laws with our known first few covariant
Hamiltonians Hij for AKNS [Caudrelier, Stoppato ’20].
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3. How to construct a Lagrangian multiform?

Idea 1): generating Lagrangian multiform

• Assemble the Lagrangian coefficients Lij into a formal series

L (λ, µ) =

∞∑
i,j=0

Lij

λi+1µj+1

• Propose a formula for L (λ, µ).
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3. How to construct a Lagrangian multiform?

Idea 2) and 3): form of L (λ, µ)

• L (λ, µ) = K(λ, µ)− V (λ, µ) with

K(λ, µ) = Tr
(
φ(µ)−1∂λφ(µ)Q0 − φ(λ)−1∂µφ(λ)Q0

)
,

V (λ, µ) = −1

2
Tr

(Q(λ)−Q(µ))2

λ− µ
.

where Q0 = −iσ3, ∂µ ≡
∞∑
k=0

1

µk+1
∂tk , and

φ(λ) = 1I +

∞∑
j=1

φj
λj
, Q(λ) = φ(λ)Q0φ

−1(λ)

→ formal dressing in sl2 loop algebra.
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3. How to construct a Lagrangian multiform?

Why am I claiming that we have a Lagrangian multiform for
the AKNS hierarchy?

• [Flaschka, Newell, Ratiu ’83] showed that, with

Q(λ) =

∞∑
j=0

Qjλ
−j , Qj =

(
aj bj
cj −aj

)
∈ sl2 , Q0 = −iσ3 ,

all (positive) AKNS flows can be be written as

∂tkQ(λ) = [V (k)(λ), Q(λ)] , k ≥ 0

where

V (k)(λ) = P+(λkQ(λ)) =

k∑
j=0

Qjλ
k−j (Lax matrix for tk flow)

• Zero curvature equations for the whole hierarchy hold

∂tjV
(k)(λ)− ∂tkV

(j)(λ) + [V (k)(λ), V (j)(λ)] = 0 j, k ≥ 0

• (V (1)(λ), V (2)(λ))= Lax pair for NLS, (V (1)(λ), V (3)(λ))= Lax
pair for mKdV.
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∂tkQ(λ) = [V (k)(λ), Q(λ)] , k ≥ 0

where

V (k)(λ) = P+(λkQ(λ)) =

k∑
j=0

Qjλ
k−j (Lax matrix for tk flow)

• Zero curvature equations for the whole hierarchy hold

∂tjV
(k)(λ)− ∂tkV

(j)(λ) + [V (k)(λ), V (j)(λ)] = 0 j, k ≥ 0

• (V (1)(λ), V (2)(λ))= Lax pair for NLS, (V (1)(λ), V (3)(λ))= Lax
pair for mKdV. Vincent Caudrelier Yau Centre seminar



3. How to construct a Lagrangian multiform?

• Now, introduce formal series

∂µ ≡
∞∑
k=0

1

µk+1
∂tk ,

1

µ− λ
≡
∞∑
k=0

λk

µk+1

to get

∂tkQ(λ) = [V (k)(λ), Q(λ)] k ≥ 0⇔ ∂µQ(λ) =

[
Q(µ)

µ− λ
,Q(λ)

]
.

→ Generating Lax equation for integrable hierarchy.
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3. How to construct a Lagrangian multiform?

Now we have

Theorem

L (λ, µ) is a Lagrangian multiform for the AKNS hierarchy
equations i.e.

δdL = 0⇔ ∂µQ(λ) =

[
Q(µ)

µ− λ
,Q(λ)

]
,

and dL = 0 on these equations (closure relation). In generating
form, the latter is equivalent to

∂νL (λ, µ) + ∂λL (µ, ν) + ∂µL (ν, λ) = 0.

Corollary: The generating Lax equation for the AKNS
hierarchy is variational! FNR had shown the flows were
Hamiltonian but no Lagrangian interpretation was known.
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3. How to construct a Lagrangian multiform?

• Euler-Lagrange eqs for Lij are equivalent to the
corresponding zero curvature equation

∂tiV
(j)(λ)− ∂tjV (i)(λ) + [V (j)(λ), V (i)(λ)] = 0

• Explicit calculation reproduces

L12 =
1

2
(rq2 − qr2) +

i

2
q1r1 +

i

2
q2r2

L13 =
1

2
(rq3 − qr3)−

1

8
(r1q11 − q1r11)−

3qr

8
(rq1 − qr1)

and gives other systematically.
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3. How to construct a Lagrangian multiform?

Reinterpretation with classical r-matrix

•The kernel 1/(µ− λ) is typical of the rational r-matrix

r12(λ, µ) =
P12

(µ− λ)

P12 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 permutation operator on C2 ⊗ C2
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3. How to construct a Lagrangian multiform?

Reinterpretation with classical r-matrix

• Then

∂µQ(λ) =

[
Q(µ)

µ− λ
,Q(λ)

]
⇔ ∂µQ1(λ) = [Tr2r12(λ, µ)Q2(µ), Q1(λ)] .

• Generating function for the Lax matrices

V (λ, µ) = Tr2r12(λ, µ)Q2(µ) =

∞∑
k=0

1

µk+1
V (k)(λ)

• It can be shown [Avan, Caudrelier ’16] that each V (k)(λ) satisfies a
Sklyanin (Lie-Poisson) bracket

{V (k)
1 (λ), V

(k)
2 (µ)}k = [r12(λ, µ), V

(k)
1 (λ) + V

(k)
2 (µ)]

• Jacobi identity ensured by the Classical Yang-Baxter equation[
r12(λ, µ), r13(λ, ν)

]
+
[
r12(λ, µ), r23(µ, ν)

]
−
[
r13(λ, ν), r32(ν, µ)

]
= 0.
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3. How to construct a Lagrangian multiform?

Liouville integrability from classical r-matrix formalism

• From

{V (k)
1 (λ), V

(k)
2 (µ)}k = [r12(λ, µ), V

(k)
1 (λ) + V

(k)
2 (µ)]

the monodromy matrix T (k)(λ) associated to V (k)(λ)
satisfies Sklyanin quadratic Poisson bracket

{T (k)
1 (λ), T

(k)
2 (µ)}k = [r12(λ, µ), T

(k)
1 (λ)T

(k)
2 (µ)]

• Consequence

{TrT (k)(λ),TrT (k)(µ)}k = 0⇒ {Hi, Hj}k = 0
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

Key observations for our AKNS generating Lagrangian
multiform : beyond a single hierarchy.

1. The potential term in L (λ, µ) has a characteristic form

Tr12 (r12(λ, µ)Q1(λ)Q2(µ))

where r12(λ, µ) = P12
µ−λ is the rational r-matrix.

→ How about replacing this particular r-matrix with another
(skew-symmetric) r-matrix?

Vincent Caudrelier Yau Centre seminar



4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

Key observations for our AKNS generating Lagrangian
multiform : beyond a single hierarchy.

1. The potential term in L (λ, µ) has a characteristic form

Tr12 (r12(λ, µ)Q1(λ)Q2(µ))

where r12(λ, µ) = P12
µ−λ is the rational r-matrix.

→ How about replacing this particular r-matrix with another
(skew-symmetric) r-matrix?

Vincent Caudrelier Yau Centre seminar



4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

2. The choice of expanding all the objects as formal series in
1/λ and 1/µ is a sign that one is performing an expansion
around the point at infinity.

→ How about considering other points in CP 1?

3. The Pauli matrix in Q0 = −iσ3 is a special choice of constant
element in the underlying loop algebra of sl2 from which the
phase space is built as a (co)adjoint orbit.

→ How about considering other elements in the loop algebra to
construct different phase spaces and even considering other Lie
algebras than sl2?
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

• Careful implementation of these natural observations involves
using the Lie algebra of g-valued adèles associated with a
Lie algebra g instead of the loop algebra of sl2 [Semenov-Tian-Shansky

’08].

• In a nutshell, with λa = λ− a for a ∈ C and λ∞ = 1
λ ,

Aλ(g) :=
∐

a∈CP 1

g⊗ C((λa)) ,

An element X(λ) = (Xa(λa))a∈CP 1 of this algebra consist of
tuples with all but finitely many of the formal Laurent series
Xa(λa) ∈ g⊗ C((λa)) being Taylor series in λa, i.e. there exists
a finite subset S ⊂ CP 1 such that Xa(λa) ∈ g⊗ CJλaK for every
a ∈ C \ S.

Vincent Caudrelier Yau Centre seminar



4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

• Careful implementation of these natural observations involves
using the Lie algebra of g-valued adèles associated with a
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

Schematic implementation of the generalisation

sl2 → g

∞ → S ⊂ CP 1

times tn → times tan , a ∈ S

∂µ =

∞∑
k=0

1

µk+1
∂tk → Dλa =

∑
n

λna∂tan

Q(λ) → Q(λ) = (Qa(λa))a∈CP 1

φ(λ) → φ(λ) = (φa(λa))a∈CP 1

Q0 = −iσ3 → (ιλF (λ))− collection of principal parts
of g-valued rational function F (λ)

with poles in finite set S
P12
µ−λ → any skew-symmetric r-matrix r12(λ, µ)

L (λ, µ) → L (λ,µ) = collection of L a,b(λa, µb)
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

• Elementary Lagrangians computed as

L a,b
m,n := resλa resµb L a,b(λa, µb)λ

−m−1dλµ−n−1dµ

• Elementary Lax matrices V a
m(λ) similarly computed from

V (λ;µ) := Tr2
(
ιµr12(λ, µ)Q2(µ)

)

• Key message: Euler-Lagrange eqs for L a,b
m,n equivalent to zero

curvature equation for times tam, tbn

∂tbnV
a
m(λ)− ∂tamV

b
n (λ) +

[
V a
m(λ), V b

n (λ)
]

= 0

→ Full integrable hierarchy in variational form.
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

Main results

Theorem

The generating Lax equation

DµQ1(λ) =
[

Tr2
(
ιλιµr12(λ, µ)Q2(µ)

)
,Q1(λ)

]
. (1)

is variational: it derives from the multiform EL eqs for
L (λ,µ). The closure relation in generating form

DνL (λ,µ) +DµL (ν,λ) +DλL (µ,ν) = 0

holds as a consequence of the CYBE equation.

Theorem

The flows (1) on the Lie algebra of g-valued adèles commute as
a consequence of the CYBE
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

Theorem

The CYBE also ensures that the generating zero curvature
equation holds

DνV (λ;µ)−DµV (λ;ν) +
[
V (λ;µ),V (λ;ν)

]
= 0,

where
V (λ;µ) := Tr2

(
ιµr12(λ, µ)Q2(µ)

)
generates the local Lax matrices as

V b(λ;µb) =

∞∑
n=−Nb

V b
n (λ)µnb , b ∈ C ,

V∞(λ;µ∞) =

∞∑
n=−N∞

V∞n (λ)µn+k+1
∞ .
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

Procedure to get examples.

Choose:

(i) a skew-symmetric r-matrix (rational or trig for us),

(ii) an effective divisor D :=
∑

a∈S Naa, with support given by
a finite subset S ⊂ CP 1,

(ii) a Lie algebra g which for simplicity we take to be either
glN or slN ,

(iv) a g-valued rational function F (λ) ∈ Rλ(g) with poles
divisor (F )∞ = D, i.e. with a pole of order Na at each
point a ∈ S.
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

Recovering the original AKNS example.

Fix the data as

S = {∞} , N∞ = 0 , g = sl2 , F (λ) = −iσ3 ,

and choose the rational r-matrix r12(λ, µ) = P12
µ−λ .
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

Sine-Gordon hierarchy

For the hierarchy of the sine-Gordon equation (in light-cone
coords)

uxy + sinu = 0 ,

we fix S = {0,∞}, N0 = 1 = N∞, g = sl2,

F (λ) =
i

2

(
1

λ
σ+ + σ− − σ+ − λσ−

)
and we choose the trigonometric r-matrix

rtrig12 (λ, µ) =
1

2

(
P+
12 − P

−
12 +

µ+ λ

µ− λ
P12

)
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

We can derive all elementary Lagrangians. We find

LsG ≡ L 0,∞
00 = −1

4
uxuy −

1

2
cosu

LmKdV ≡ L∞,∞
01 =

1

4
uxuz+

1

16
u4x−

1

4
u2xx−

i

4
∂x

(
1

6
u3x + iuxuxx

)

Lmixed ≡ L 0,∞
01 = −1

4
uyuz −

1

2
uxx(uxy + sinu) +

1

4
u2x cosu

− i
4
∂y

(
1

6
u3x + iuxuxx

)
Recover the results of [Suris ’16].
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

Hierarchies of Zakharov-Mikhailov type
Correspond to Lax matrices of Zakharov-Shabat type: rational
Lax matrices with prescribed pole structures.

• In our setup, choose the following data

S = {a1, . . . , aP } ⊂ C , P > 0 , g = glN ,

F (λ) = −
P∑
i=1

ni∑
r=0

Air
(λ− ai)r+1

.

• Each Air ∈ glN is a non-dynamical constant matrix.

• r-matrix can be the rational (original Zakharov-Mikhailov
case) or trigonometric (new models). Even in rational case,
obtain full hierarchy, not just a single model/level.
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

Most famous example: Faddeev-Reshetikhin version of
Principal chiral model

• 2 simple poles a, b = −a in S,

F (λ) = − A

(λ− a)
− B

(λ+ a)
.

• Lowest elementary Lax matrices for times ta−1 ≡ ξ, t
−a
−1 ≡ η

V a
−1(λ) =

φAφ−1

λ− a
≡ J0
λ− a

, V b
−1(λ) =

ψBψ−1

λ+ a
≡ J1
λ+ a

• Zero curvature equations

∂ηJ0 +
1

2a
[J0, J1] = 0 , ∂ξJ1 +

1

2a
[J0, J1] = 0 .
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

• We get the lowest elementary Lagrangian as

L ab
−1−1 = Tr

(
φ−1∂ηφA− ψ−1∂ξψB −

φAφ−1 ψBψ−1

2a

)
.
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

Coupling models/hierarchies

• Procedure produces new models/hierarchies that are
automatically integrable. NB: not the same as taking
combination of flows within a hierarchy.

• Example: couple nonlinear Schrödinger to
Faddeev-Reshetikhin.

S = {a,−a,∞} , a ∈ C× , Na = Nb = 1 , N∞ = 0 , g = sl2 ,

F (λ) = −iασ3 +
A

λ− a
+

B

λ+ a
≡ αFAKNS(λ) + FFR(λ) ,

where A,B are constant sl2 matrices.

• α couples the two theories: α = 0 gives a pure FR theory
while sending α to infinity produces a pure AKNS hierarchy.
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

• Extract model at lowest level. Can compute Lax matrices and
zero curvature equations and Lagrangian that produces those
equations.

∂ηJ0 +
1

2a
[J0, J1] + α [J0, VNLS(a)] = 0 ,

∂ξJ1 +
1

2a
[J0, J1]− α [UNLS(−a), J1] = 0 ,

α∂ξQ1 + iα2[σ3, Q2] + iα[J0, σ3] = 0 ,

α∂ηQ1−α∂ξQ2+α
2[Q1, Q2]−iaα[J0, σ3]−iα[σ3, J1]+α[J0, Q1] = 0 .

• If needed, can compute all higher levels in hierarchy.
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5. Conclusions

• Lagrangian multiform theory: a purely Lagrangian approach
to classical integrability, from a generalised variational principle.

• The problem of constructing efficiently Lagrangian multiforms
led to several developments:

1. We brought together the theory of Lagrangian multiforms
and of the classical r-matrix and CYBE for the first time.
→ Conceptual by-products: (i) CYBE acquires a variational
interpretation for first time; (ii) closure relation established as
fundamental criterion for “Lagrangian integrability”.

2. Constructive approach to derive (not guess), from minimal
(algebraic) input, Lax pairs and Lagrangians for corresponding
zero curvature equations. Applicable to large variety of
integrable hierarchies, old and new.
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5. outlook, open questions

Many open questions.

Classical level

• Connection between our results and 4d Chern-Simons
construction of integrable field theories. Extend results from
[Caudrelier, Stoppato, Vicedo ’21] to entire hierarchies encoded in
our generating Lagrangian multiform?

• What about non ultralocal integrable theories? How to relate
with other important construction of non ultralocal integrable
theories via affine Gaudin models?

Quantum level

• Covariant quantization of integrable field theories? Relation
to quantum R matrix and quantum YBE?
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THANK YOU!
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4. A generating Lagrangian multiform for ultralocal
field theories and CYBE

In formulas,

L (λ,µ) := K(λ,µ)−U(λ,µ) = (L a,b(λa, µb))a,b∈CP 1

Kinetic and potential terms

K(λ,µ) = Tr
(
φ(λ)−1Dµφ(λ)(ιλF (λ))−

)
−Tr

(
φ(µ)−1Dλφ(µ)(ιµF (µ))−

)
,

U(λ,µ) = 1
2 Tr12

(
(ιλιµ + ιµιλ)r12(λ, µ)Q1(λ)Q2(µ)

)
.

Generating Lax equation reads

DµQ1(λ) =
[

Tr2
(
ιλιµr12(λ, µ)Q2(µ)

)
,Q1(λ)

]
. (2)

derives from multiform EL eqs.
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