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      Monte-Carlo is the only universal and  systematic numerical method to compute 
      functional integrals for (non-integrable)  QFTs and Matrix Models.
      This is (intellectually and practically)  un  unsatisfactory  situation                    
      
      Bootstrap opens the way for a new, more analytic approach 
     - Provides rigorous inequalities on physical quantities.     
       - Combines  Schwinger-Dyson (loop) equations & positivity of correlation matrices
       - Greatly inspired by  conformal and  S-matrix bootstrap
       - Applicable to large variety of multiple and functional integrals.
       - Large space for improvements
       - Successfully applied to large N multi-matrix integrals
       -  Earlier attempts to bootstrap Lattice Yang-Mills theory
       
         
         Today:
         1. We briefly review our application of bootstrap to a two matrix model         
          2. We report our results of bootstrap study of Lattice Yang-Mills theory in 2D, 3D and 4D 
             and compare them to Monte-Carlo and perturbation theory 
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Bootstrap  for Two-Matrix Model

Matrix “words”:

Schwinger-Dyson relations

large N factorization

give loop equations relating various  moments :

For numerics,  take  (length of words) ≤ Lmax. Many more words than equations!
How to complete the missing information?  Positivity conditions on moments -- Matrix Bootstrap

“Unsolvable” 2MM, with Hermitian N×N matrices
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the bootstrap process reduces to the following  SDP  (semi-definite programing):

Loop eqs. are nonlinear -- the problem becomes highly non-convex. 
To make it convex we apply the relaxation procedure (explained later) 
It becomes a convex SDP (semi-definite programing), thus very efficient.

Positivity of the correlations:  

Linear combination of words of length ≤ Lmax :  

For the moments

Positivity of correlations and bootstrap



Numerical bootstrap for 2-matrix model

Still within the capability of a single laptop: ~40 hours CPU time.      Can be improved…

Relaxed bootstrap gives 6-digit 
precision for cutoff Lmax = 22

Compare to Monte Carlo  (N=800): 

g=h=1

L = 14
L = 16
L = 18
L = 22

Exact inequalities! (unlike Monte Carlo):
Increasing Lmax will only improve the margins 
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Functional integral!

(4 didgits, ~ 80 hours) 



Solutions with broken         symmetry
They exist only with negative signs of quadratic terms

Allowed region for

Upper limit  seems to be the best estimate
 to exact line of symmetry breaking solutions

Numerical bootstrap for generic parametersh=0:  2 decoupled 1MM’s
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Maximisation is much closer to the exact 1MM value 



Bootstrap for Lattice Yang-Mills Theory (Nc → ∞)

We solve Makeenko-Migdal loop equations for Wilson  loops  of lengths ≤ Lmax    

 supplemented by:

• Positivity  and reflection-positivity of correlation matrices (unitarity of gauge variables)
• Relaxation of non-linear loop equations to convex inequalities
• Symmetry reductions of correlation matrices

We significantly modified the bootstrap scheme and improved the results (for plaquette average)
 w.r.t. the work of Anderson & Kruczenski ‘17.

Our numerical results look encouraging…



Makeenko-Migdal loop equation (Nc → ∞)
Lattice Yang-Mills, Wilson action

Wilson loop average

It satisfies Makeenko-Migdal loop equations (LE), which are Schwinger-Dyson  
equations obtained via the invariant shifts of every link variable: 
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Plaquette average



Back-track loop equations
Back-track identity on Wilson averages 
(from unitarity of link variables)

V.K. & Zechuan Zheng

There are many more loops than equations. No clear boundary conditions for large loops.
 We will impose instead a few positivity conditions

One can write loop equations on back-track links. 

We use all loop equations on all Wilson averages  for loops  up to length ≤ Lmax  

At   Lmax =16, for 3D and 4D, back-track LEs constitute more than 80% of all LEs. We have about 40,000 LEs in 3D and   
about 100,000   LEs in  4D.  Around 3/4 of them are linear and independent. Only a minority  are non-linear.

Example of a non-linear back-track equation:



Positivity of correlation matrix

Positivity  of quadratic form
Implies positive definiteness of correlation matrix

Define operator - linear combination of all Wilson paths  (0→x)  of lengths ≤ ½Lmax 

Example of correlation matrix,   Lmax =2+2,     Paths   0 → (1,1):  

unitarity constraint!

For our best data we take   Paths   0 → 0.  
For Lmax =∞  it would take into account all constraints.   Works well even for Lmax =16
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Reflection positivity of correlations
V.K. & Zechuan Zheng

Positivity  w.r.t. reflection

Different from correlation matrix positivity and very important

Three types of  reflection:   site, link and diagonal, e.g. 

Osterwalder, Seiler
Montvay, Munster



Symmetry reduction V.K. & Zechuan Zheng

• Lattice symmetries help to block-diagonalize the correlation and reflection matrices,
      greatly reducing the complexity of the problem.  Symmetry for a matrix element:

• If the vector space of paths decomposed into direct sum of irreps Repk  
     of the invariant group with multiplicity mk  then positivity condition 
    of the inner product matrix is equivalent to the collection of positivity conditions
    on the matrices corresponding to each Repk  with matrix dimension mk×mk

• Symmetries for Paths 0 → 0
     (BD - hyper-octahedral group) 

• Example: for  D=3, Lmax =16,  the 0 → 0  correlation matrix is of huge size (6505)2

      Symmetry reduction to 20 smaller matrices of sizes 
      38, 15, 25, 18, 62, 33, 68, 75, 56, 78, 22, 18, 34, 15, 56, 33, 57, 76, 69, 73 



Relaxation for matrix loop equations
The Semi-Definite-Programing is highly non-convex for non-linear loop equations. 
Idea: Replace the non-linear loop equations by linear relations  +  convex inequalities

We treat                             appearing in the r.h.s. of loop equations as independent variables

We transformed the non-linear, non-convex problem to a convex one, 
much more efficient for numerical SDP solvers!

V.K. & Zechuan Zheng ‘21

Relax it to condition of positive definiteness of the matrix

 rank-1 matrix if 

The loss of information compensated by the increase of  Lmax 
No clear understanding why it works so well…



Final SDP algorithm
V.K. & Zechuan Zheng

• Our bootstrap algorithm  (similar to that for the 2-matrix model) :

All conditions are linear or convex!

At the cutoff Lmax =16, every data point takes  ~20  hours of CPU time for 4D, 
and only half an hour for 3D   (on a desktop computer)



Bootstrap for lattice Yang-Mills:   <plaquette>(λ),   D=2, Lmax =8, 12, 16

<plaquette>

Bootstrap(min)

Bootstrap(max)

Exact

Lmax =12
Lmax =16

Lmax =8

Exact solution:
Gross, Witten
Wadia



Bootstrap for Yang-Mills: <plaquette>(g),   D=3, Lmax =16

<plaquette>

Monte-Carlo

Lmax =8

Lmax =12  (no reflection positivity)

Lmax =16
Lmax =12

PT and  SC expansion



Main result: plaquette average                       in D=4 lattice Yang-Mills
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Bootstrap results: at IR cutoff Lmax =16,  upper bound  close to 3-loop perturbation theory
                                                                lower bound close to strong coupling expansion 
           Not far from  the Monte-Carlo data (if not too close to phase transition λ ≈1.5)

SU(10):  Andersen, Kruczenski
SU(12):  Athenodorou, Teper
SU(16),TEK: Gonzalez-Arroyo, Okawa   

Alles Feo, Panagopoulos

λ

Drouffe, Zuber

3-loop perturbation theory:    

Strong coupling exp.:    

Monte-Carlo  SU(10)    



Non-perturbative effects from  <plaquette>(g)   (D=4, Lmax =16) ?

Attempt to measure non-perturbative effects  for gluon condensate  

We take the difference of our plaquette average and 3-loop PT

 Can be trusted only sufficiently far from 1st order phase transition point λ ≈1.5
 (but may be understood as analytic continuation ?)  

compare to 

Compostrini, DiGiacomo,Gunduc,‘1989
Boyd et al, 1995

ΔS is the difference is vev’s of the T=0 and T ≠ 0 
plaquettes (MC Nc= 3) Our curve at T=0 is similar to the one of Boyd et al at finite T. Both originate from gluon condensate   

Chernodub, V.K., Zheng (work in progress)



•    Can we get a better precision than Monte-Carlo for D=3,4?  
•   Prospects of computing 1/N corrections? Linear problem! 
•    Finite N bootstrap? 
•   Quarks:  We compute all Wilson loops! Sum them with spinorial 

factor 
•  Applications to other physical problems: Masses, S-matrix, real time   
      processes, finite temperature barions, condensates… 
•   Flux-tube bootstrap?
• How to define gauge theory in terms of Wilson loops? 
    What loop equations are independent?  

Basic open questions and future problems



Thank You

My father (in the middle), advisor of the rector of Dalian Naval Institute (now Academy), 
with professors and his students, 1956


