Bootstrap for Matrix Models and Lattice Yang-Mills Theory at large N

Vladimir Kazakov

Collaborations with Zechuan Zheng : arxiv:2108.04830 arxiv:2203.11360

Why Bootstrap?

Monte-Carlo is the only universal and systematic numerical method to compute functional integrals for (non-integrable) QFTs and Matrix Models. This is (intellectually and practically) un unsatisfactory situation

Bootstrap opens the way for a new, more analytic approach

- Provides rigorous inequalities on physical quantities.
- Combines Schwinger-Dyson (loop) equations & positivity of correlation matrices
- Greatly inspired by conformal and S-matrix bootstrap
- Applicable to large variety of multiple and functional integrals.
- Large space for improvements
- Successfully applied to large N multi-matrix integrals
- Earlier attempts to bootstrap Lattice Yang-Mills theory

Jevicki, Karim, Rodriges, Levine 80's Anderson, Kruszenski'17

Rattazzi, Rychkov, Tonni Paulos, Penedones, Toledo, van Rees, Vieira

> Lin'20 Han, Hartnoll, Kruthoff'20 V.K., Zheng '21 De Mello Koch et al '21 Bhattacharya et al '21 Berenstein, Hulsay '22 Aikawa, Morita, Yoshimura'22

Today:

- 1. We briefly review our application of bootstrap to a two matrix model
- 2. We report our results of bootstrap study of Lattice Yang-Mills theory in 2D, 3D and 4D and compare them to Monte-Carlo and perturbation theory

V.K., Zheng '22

V.K., Zheng '21

Bootstrap for Two-Matrix Model

H.Lin '20

V.K. & Zechuan Zheng '21

"Unsolvable" 2MM, with Hermitian $N \times N$ matrices A, B

$$Z = \lim_{N \to \infty} \int d^{N^2} A \, d^{N^2} B \, e^{-N \operatorname{tr} V(A,B)} \qquad \qquad V(A,B) = -h[A,B]^2/2 + A^2/2 + gA^4/4 + B^2/2 + gB^4/4$$

Matrix "words": Word = *ABBAAABAAB*...

Schwinger-Dyson relations $\int d^{N^2} A \, d^{N^2} B \, \operatorname{tr}(\partial_A (\operatorname{Word} \times e^{-N \operatorname{tr} V(A,B)}) = 0, \quad (\text{same for } B)$ give loop equations relating various moments : $\langle \operatorname{tr} \operatorname{Word} \rangle = \langle \operatorname{tr}(ABBAAABAAB...) \rangle$

$$\langle \frac{\operatorname{tr}}{N} (\partial_A V(A, B) \times \operatorname{Word}(\mathcal{C}_{1L})) \rangle = \sum_{k=1}^{L} \delta_{k \sim A} \langle \frac{\operatorname{tr}}{N} \operatorname{Word}(\mathcal{C}_{1,k-1}) \rangle \cdot \langle \frac{\operatorname{tr}}{N} \operatorname{Word}(\mathcal{C}_{k+1,L}) \rangle$$

$$\overset{B_{1}}{\underset{\circ}{\operatorname{o}}} \overset{\circ}{\underset{\circ}{\operatorname{o}}} \overset{\circ}{\underset{\circ}}} \overset{\circ}{\underset{\circ}{\operatorname{o}}} \overset{\circ}{\underset{\circ}} \overset{\circ}{\underset{\circ}{\operatorname{o}}} \overset{\circ}{\underset{\circ}}} \overset{\circ}{\underset{\circ}} \overset{\circ}{\underset{\circ}}} \overset{\circ}{\underset{\circ}} \overset{\circ}{\underset{\circ}}} \overset{\circ}{\underset{\circ}} \overset{\circ}{\underset{\circ}}} \overset{\circ}{\underset{\circ}} \overset{\circ}{\underset{\circ}}} \overset{\circ}{\underset{\circ}} \overset{\circ}{\underset{\circ}} \overset{\circ}{\underset{\circ}}} \overset{\circ}{\underset{\circ}} \overset{\circ}{\underset{\circ}} \overset{\circ}{\underset{\circ}}} \overset{\circ}{\underset{$$

 $\partial_A V(A,B) = -2hBAB + hAB^2 + hB^2A + A + B + gA^3 + gB^3$

For numerics, take (length of words) $\leq L_{max}$. Many more words than equations! How to complete the missing information? Positivity conditions on moments -- Matrix Bootstrap

Positivity of correlations and bootstrap

Linear combination of words of length $\leq L_{max}$:

$$\mathcal{O} = \sum_{k=1}^{\mathcal{L}} \alpha_k \operatorname{Word}_k = \alpha_1 I + \alpha_2 A + \alpha_3 B + \alpha_4 A^2 + \alpha_5 B^2 + \alpha_7 A B + \alpha_8 B A + \alpha_9 A B B + \cdots$$

Positivity of the correlations:

$$\operatorname{Tr}\langle \mathcal{O}^{\dagger}\mathcal{O}\rangle = \sum_{k,j}^{\mathcal{L}} \alpha_k \, \alpha_j \, \mathbb{M}_{k,j} \geq 0, \qquad \mathbb{M}_{k,j} = \langle \frac{1}{N} \operatorname{tr}(\operatorname{Word}_k \operatorname{Word}_j) \rangle \implies \mathbb{M} \succeq 0$$

For the moments $\mathcal{W} = \{I, \langle \operatorname{tr} A \rangle, \langle \operatorname{tr} B \rangle, \langle \operatorname{tr} A^2 \rangle, \langle \operatorname{tr} B^2 \rangle, \langle \operatorname{tr} A B^2 \rangle, \langle \operatorname{tr} B A^2 \rangle, \langle \operatorname{tr} A^2 B^2 \rangle, \dots \}$

the bootstrap process reduces to the following SDP (semi-definite programing):

$$\begin{array}{ll} \text{minimize/maximize} & \sum_{p} c_{p} \mathcal{W}_{p} & (\text{computed observable}) \\ \text{subject to} & \sum_{p} b_{p}^{(i)} \mathcal{W}_{p} = \sum_{pq} \mathcal{W}_{p} \mathcal{A}_{pq}^{(i)} \mathcal{W}_{q} & (i\text{'th loop equation}), \\ \text{and} & \mathbb{M} \succeq 0, & (\mathbb{M}_{ij} - \text{linear functions of } \mathcal{W}_{p}) \end{array}$$

Loop eqs. are nonlinear -- the problem becomes highly non-convex. To make it convex we apply the relaxation procedure (explained later) It becomes a convex SDP (semi-definite programing), thus very efficient.

Numerical bootstrap for 2-matrix model

Compare to Monte Carlo (*N=800*): $\langle \frac{\text{tr}}{N_c} A^2 \rangle = 0.42179(3), \quad \langle \frac{\text{tr}}{N_c} A^4 \rangle = 0.33336(5)$

Roghav Govind Jha '21

(4 didgits, ~ 80 hours)

Solutions with broken $\mathbb{Z}_2^{\otimes 3}$ symmetry $\langle TrA \rangle = \langle TrB \rangle \neq 0$

They exist only with negative signs of quadratic terms

$$V(A,B) = \frac{N}{\hbar} \operatorname{tr} \left(-h[A,B]^2/2 - \frac{A^2}{2} + \frac{gA^4}{4} - \frac{B^2}{2} + \frac{gB^4}{4} \right)$$

h=0: 2 decoupled 1MM's

Numerical bootstrap for generic parameters

Maximisation is much closer to the exact 1MM value

Upper limit seems to be the best estimate to exact line of symmetry breaking solutions

Bootstrap for Lattice Yang-Mills Theory $(N_c \rightarrow \infty)$

We solve Makeenko-Migdal loop equations for Wilson loops of lengths $\leq L_{max}$ supplemented by:

- Positivity and reflection-positivity of correlation matrices (unitarity of gauge variables)
- Relaxation of non-linear loop equations to convex inequalities
- Symmetry reductions of correlation matrices

We significantly modified the bootstrap scheme and improved the results (for plaquette average) w.r.t. the work of Anderson & Kruczenski '17.

Our numerical results look encouraging...

Makeenko-Migdal loop equation ($N_c \rightarrow \infty$) Anderson, Kruczenski '17 V.K. & Zechuan Zheng '22

Lattice Yang-Mills, Wilson action $S = -\frac{N_c}{2\lambda} \sum_{n} \operatorname{tr} U_P$

Plaquette average

$$u_P = \frac{1}{N_c} \langle \operatorname{tr} U_P \rangle$$

Wilson loop average

 $W[C] = \langle rac{\mathrm{tr}}{N_c} \prod_{l \in C} U_l \rangle$

It satisfies Makeenko-Migdal loop equations (LE), which are Schwinger-Dyson equations obtained via the invariant shifts of every link variable: $U_l \rightarrow U_l (\mathbb{I} + i\epsilon)$

 $\epsilon \in su(N_c)$

Back-track loop equations

V.K. & Zechuan Zheng

Back-track identity on Wilson averages (from unitarity of link variables)

One can write loop equations on back-track links.

Example of a non-linear back-track equation:

We use all loop equations on all Wilson averages for loops up to length $\leq L_{max}$ $\vec{W} = \{W[C_1], W[C_2], \dots, W[C_{\mathcal{L}}]\}$

There are many more loops than equations. No clear boundary conditions for large loops. We will impose instead a few positivity conditions

At L_{max} =16, for 3D and 4D, back-track LEs constitute more than 80% of all LEs. We have about 40,000 LEs in 3D and about 100,000 LEs in 4D. Around 3/4 of them are linear and independent. Only a minority are non-linear.

Positivity of correlation matrix

Jevicki, Karim, Rodriges, Levine 80's Anderson, Kruszenski'17 V.K., Zheng '22

Define operator - linear combination of all Wilson paths $(0 \rightarrow x)$ of lengths $\leq \frac{1}{2}L_{max}$

Positivity of quadratic form
$$\langle \operatorname{tr} (\mathcal{O}^{\dagger} \mathcal{O} \rangle \geq 0, \forall \alpha$$

mplies positive definiteness of correlation matrix $\mathbb{M}_{ij} = \langle \operatorname{tr} (\Psi(C_i)^{\dagger} \Psi(C_j) \rangle = \mathcal{W}(\overline{C}_i \circ C_j)$
 $\mathbb{M} \succeq 0$

Example of correlation matrix, $L_{max} = 2+2$, Paths $0 \rightarrow (1,1)$: Path₁ = -, Path₂ =

$$\begin{array}{ccc} & \operatorname{Path}_1 & \operatorname{Path}_2 \\ \operatorname{Path}_2^{\dagger} \left(\begin{array}{ccc} 1 & u_P \\ u_P & 1 \end{array} \right) \succeq 0 & \longrightarrow & u_P^2 \leq 1 \end{array} & \operatorname{unitarity \ constraint!} \end{array}$$

For our best data we take Paths $0 \rightarrow 0$. For $L_{max} = \infty$ it would take into account all constraints. Works well even for $L_{max} = 16$

Reflection positivity of correlations

V.K. & Zechuan Zheng

Three types of reflection: site, link and diagonal, e.g.

 $\mathbb{S} \succeq 0 \qquad \qquad \mathbb{S}_{ij} = \langle \operatorname{tr} \left(\Psi(C_i) \Psi(\Theta \circ C_j) \right) \rangle$

Different from correlation matrix positivity and very important

Symmetry reduction

 $\mathcal{O} = \sum_{C_{0 \to x}} \alpha[C_{0 \to x}] \Psi[C_{0 \to x}]$

• Lattice symmetries help to block-diagonalize the correlation and reflection matrices, greatly reducing the complexity of the problem. Symmetry for a matrix element:

$$\langle \operatorname{tr} \left(g \circ \mathcal{O}_1^{\dagger} \right) \cdot \left(g \circ \mathcal{O}_2 \right) \rangle = \langle \operatorname{tr} \mathcal{O}_1^{\dagger} \cdot \mathcal{O}_2 \rangle, \qquad g \in G' \subset \mathbb{Z}_2 \times \mathbb{Z} \times G_D$$

• Symmetries for Paths $0 \rightarrow 0$ (B_D - hyper-octahedral group)

_				
	Dimension	Hermitian	site&link re-	diagonal re
		Conjugation	flection	flection
	2	$B_2 \times \mathbb{Z}_2$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_2 imes \mathbb{Z}_2$
	3	$B_3 imes \mathbb{Z}_2$	$B_2 \times \mathbb{Z}_2$	\mathbb{Z}_2^3
	4	$B_4 \times \mathbb{Z}_2$	$B_3 \times \mathbb{Z}_2$	$B_2 \times \mathbb{Z}_2^2$

- If the vector space of paths decomposed into direct sum of irreps $\operatorname{Rep}_k^{\mathbb{A}}$ $V = \bigoplus_{k=1}^{D} \operatorname{Rep}_k^{\bigoplus} m_k$ of the invariant group with multiplicity m_k then positivity condition of the inner product matrix is equivalent to the collection of positivity conditions on the matrices corresponding to each Rep_k with matrix dimension $m_k \times m_k$
- Example: for D=3, L_{max}=16, the 0 → 0 correlation matrix is of huge size (6505)² Symmetry reduction to 20 smaller matrices of sizes 38, 15, 25, 18, 62, 33, 68, 75, 56, 78, 22, 18, 34, 15, 56, 33, 57, 76, 69, 73

Relaxation for matrix loop equations

V.K. & Zechuan Zheng '21

The Semi-Definite-Programing is highly non-convex for non-linear loop equations. Idea: Replace the non-linear loop equations by linear relations + convex inequalities

We treat $X_{pq} = W_p W_q$ appearing in the r.h.s. of loop equations as independent variables

Relax it to condition of positive definiteness of the matrix

$$\mathbb{R} = \begin{pmatrix} 1 & \mathcal{W}_{1} & \mathcal{W}_{2} & \mathcal{W}_{3} & \dots \\ \mathcal{W}_{1} & X_{11} & X_{12} & X_{13} & \dots \\ \mathcal{W}_{2} & X_{21} & X_{22} & X_{23} & \dots \\ \mathcal{W}_{3} & X_{31} & X_{32} & X_{33} & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix} \succeq 0 \qquad \text{rank-1 matrix if} \quad X_{pq} = \mathcal{W}_{p} \ \mathcal{W}_{q}$$

We transformed the non-linear, non-convex problem to a convex one, much more efficient for numerical SDP solvers!

The loss of information compensated by the increase of L_{max} No clear understanding why it works so well...

Final SDP algorithm

V.K. & Zechuan Zheng

• Our bootstrap algorithm (similar to that for the 2-matrix model) :

$$\begin{array}{ll} \text{minimize}/\text{maximize} & \sum_{p} c_{p} \mathcal{W}_{p} & (\text{computed observable}) \\ \text{subject to} & \sum_{p} b_{p}^{(i)} \mathcal{W}_{p} = \sum_{pq} \mathcal{A}_{pq}^{(i)} X_{pq} & (i\text{'th loop equation}), \\ \text{and} & \mathbb{R} \succeq 0, & (\text{relaxation condition } \mathcal{W}_{p}) \\ \text{and} & \mathbb{M} \succeq 0, & (\text{positivity of correlation matrix}) \\ \text{and} & \mathbb{S}^{\text{site}} \succeq 0, & \mathbb{S}^{\text{link}} \succeq 0, & \mathbb{S}^{\text{diag}} \succeq 0, \\ & \text{Symmetry block-reductions of all matrices} & \end{array}$$

All conditions are linear or convex!

At the cutoff L_{max} =16, every data point takes ~20 hours of CPU time for 4D, and only half an hour for 3D (on a desktop computer)

Bootstrap for lattice Yang-Mills: cplaquette<(λ), D=2, L_{max} =8, 12, 16

Bootstrap for Yang-Mills: <plaquette>(g), D=3, L_{max}=16

Main result: plaquette average $u_P = \frac{1}{N_c} \langle \operatorname{tr} U_P \rangle$ in D=4 lattice Yang-Mills

Bootstrap results: at IR cutoff L_{max} =16, upper bound close to 3-loop perturbation theory lower bound close to strong coupling expansion Not far from the Monte-Carlo data (if not too close to phase transition $\lambda \approx 1.5$) Non-perturbative effects from <plaquette>(g) $(D=4, L_{max}=16)$?

Attempt to measure non-perturbative effects for gluon condensate $\langle \operatorname{tr}(F_{\mu\nu}F^{\mu\nu}) \rangle$

We take the difference of our plaquette average and 3-loop PT

Our curve at T=0 is similar to the one of Boydet at finite Λ_{e} Both originate from gluon condensate Can be trusted only sufficiently far from 1st order phase transition point $\lambda \approx 1.5$ (but may be understood as analytic continuation ?)

Basic open questions and future problems

- Can we get a better precision than Monte-Carlo for D=3,4?
- Prospects of computing 1/N corrections? Linear problem!
- Finite N bootstrap?
- Quarks: We compute all Wilson loops! Sum them with spinorial factor
- Applications to other physical problems: Masses, S-matrix, real time processes, finite temperature barions, condensates...
- Flux-tube bootstrap?
- How to define gauge theory in terms of Wilson loops? What loop equations are independent?

Thank You

My father (in the middle), advisor of the rector of Dalian Naval Institute (now Academy), with professors and his students, 1956