Quantum Spectral Curve and $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Simon Ekhammar arXiv:2109.06164 w D. Volin
arXiv:2211.07810 w A. Cavaglià, N. Gromov and P. Ryan

Uppsala Universitet

Introduction and setting the stage

- The last two decades has seen an immense progress in solving $D=4$ planar $\mathcal{N}=4$ SYM.

■ Underlying reason: Integrability

■ Mayor accomplishment: The spectral problem was solved!

$$
\langle\mathcal{O}(x) \overline{\mathcal{O}}(y)\rangle \sim \frac{1}{|x-y|^{2 \Delta} \longleftarrow} \text { Computabbe! }
$$

■ Most efficient formulation? [Gromov, Kazakov, Leurent, Volin '13'14]

The Quantum Spectral Curve

$$
\tilde{\mathbf{P}}_{a}=\mu_{a b} \mathbf{P}^{b}
$$

What is the $\mathcal{N}=4$ QSC?

- The QSC is a set of 256 Q-functions, they depend on 1 complex parameter: u. The simplest Q-functions are called $\mathbf{P}_{a}, \mathbf{P}^{a}$

$\mathbf{P}_{a}, \mathbf{P}^{a}$

■ Analytic continuation is controlled by the so-called $\mathbf{P} \mu$ system:
 $\tilde{\mathbf{P}}_{a}=\mu_{a b} \mathbf{P}^{b}$

$$
\begin{aligned}
& \tilde{\mathbf{P}}_{a}=\mu_{a b} \mathbf{P}^{b} \\
& \tilde{\mu}_{a b}-\mu_{a b}=\mathbf{P}_{a} \tilde{\mathbf{P}}_{b}-\tilde{\mathbf{P}}_{a} \mathbf{P}_{b} .
\end{aligned}
$$

■ The asymptotics encodes quantum numbers, in particular the conformal dimension!

$$
\mu_{12} \sim_{u \rightarrow \infty} u^{\Delta-J_{1}}
$$

■ For reviews, see [Gromov '17;Kazakov'18,Levkovich-Maslyuk '19].

Elevator pitch for $\mathcal{N}=4$ QSC

Analytic weak coupling computations

- available ("Black box")
[Marboe,Volin 18']
$\mathcal{O}_{\mathcal{K}} \propto \operatorname{tr} \Phi_{I} \Phi^{I}$

Analytic continuation in spin
[Gromov,Levkovich-Maslyuk,Sizov '15]

Structure constants
[Basso, Georgoudis, Klemenchuk Sueiro '22]

- There also exists many exciting variations and deformations:

[Gromov et al '17]

What I will talk about

- The success of QSC in $\mathcal{N}=4$ raises the question: Can we extend it to other theories?
- Yes! Already successfully done for
- $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ (ABJM) \checkmark
[Bombardelli, Cavaglià,Fioravanti,Gromov, Tateo '17]
- The Hubbard Model \checkmark

[Cavaglià, Cornagliotto,Mattelliano, Tateo '15]
■ Today: Attempt to extend to $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$!
■ Why is this exciting?
- First attempt to investigate an "unknown" CFT using QSC.
- First attempt to bootstrap a consistent QSC and avoid the long historical route of $\mathcal{N}=4$.

Plan of the talk

1 Crash course on Q-systems

2 QSC generalities, the case of $\mathcal{N}=4$
3 Monodromy Bootstrap and $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ conjecture.
4 Solving the curve.

Analytic Q-systems

$\mathfrak{S u}_{2}$ spin chain I

- Consider a homogeneous $\mathfrak{s u}_{2}$ spin chain. This model has an R-matrix from which we can build a transfer-matrix

- The eigenvalues of $t(u)$: (Dressed Vacuum Form)

$$
t(u)=\left(u-\frac{i}{2}\right)^{L} \frac{Q_{1}^{[2]}}{Q_{1}}+\left(u+\frac{i}{2}\right)^{L} \frac{Q_{1}^{[-2]}}{Q_{1}}, Q \text {-function! }
$$

where $f^{[n]}=f\left(u+\frac{i}{2} n\right)$.

- Q_{1} is a polynomial $Q_{1}=\prod_{i=1}^{M}\left(u-u_{i}\right)$.

■ Asymptotic of Q_{1} encodes the quantum number M.

- Polynomiality of $t(u)$ implies Bethe equations

$$
\left.\frac{Q_{1}^{[1]}}{Q_{1}^{[-2]}}\right|_{Q_{1}=0}=-\left.\left(\frac{u+\frac{i}{2}}{u-\frac{1}{2}}\right)^{L}\right|_{Q_{1}}=0
$$

$\mathfrak{S u}_{2}$ spin chain II

- Can introduce polynomial Q_{2} and write $t(u)$ in polynomial form:

$$
t(u)=Q_{1}^{[2]} Q_{2}^{[-2]}-Q_{1}^{[-2]} Q_{2}^{[2]}
$$

Q_{1}, Q_{2} must satisfy the $\mathrm{QQ} /$ Wronskian-relation

$$
Q_{1}^{+} Q_{2}^{-}-Q_{1}^{-} Q_{2}^{+}=Q_{\bar{\emptyset}} \equiv u^{L}
$$

■ Symmetries of the system:

- Gauge-transformations

$$
Q_{a} \rightarrow r Q_{a}, \quad Q_{\bar{\emptyset}} \rightarrow r^{+} r^{-} Q_{\bar{\emptyset}}
$$

- H-rotations

$$
Q_{a} \rightarrow H_{a}{ }^{b} Q_{b}, \quad\left(H^{+}\right)_{a}{ }^{b}=\left(H^{-}\right)_{a}^{b}
$$

■ Benefits of QQ-system:

- More efficient than Bethe equations.
- Correctly deals with exceptional solutions.

$\mathfrak{s u}_{N}$ Q-systems I

- To go to $\mathfrak{s u}_{n}$ attach a Q-"vector" to nodes on the Dynkin diagram

where $a=1, \ldots, n$.
- The various Q -functions are related by functional equations: QQ-relations:

$$
Q_{A a}^{+} Q_{A b}^{-}-Q_{A a}^{-} Q_{A b}^{+}=Q_{A a b} Q_{A}, \quad Q_{\bar{\emptyset}}=u^{L} . \quad \text { Source term }
$$

■ QQ-relations leads to Nested Bethe Equations

$$
\begin{array}{ll}
\underbrace{\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)}_{A_{3} \text { Cartan Matrix }} & \left.\begin{array}{l}
\frac{Q_{1}^{[2]}}{Q_{1}^{[-2]}} Q_{12}^{[-1]} \\
Q_{1}^{[+1]}
\end{array}\right|_{Q_{1}=0}=-1 \\
\left.\frac{Q_{12}^{[2]}}{Q_{12}^{[-2]}} \frac{Q_{1}^{[-1]} Q_{123}^{[-1]}}{Q_{1}^{[+1]} Q_{123}^{[+1]}}\right|_{Q_{12}=0}=-1 \\
\left.\left.\frac{Q_{123}^{[2]} Q_{11}^{[-1]}}{Q_{123}^{[2]}}\right|_{12} ^{[+1]}\right|_{Q_{123}=0}=-\left.\left(\frac{u+\frac{i}{2}}{u-\frac{i}{2}}\right)^{L}\right|_{Q_{1}=0}
\end{array}
$$

$\mathfrak{s u}_{N}$ Q-systems II

- Symmetries of QQ-relations?

$$
Q_{A a}^{+} Q_{A b}^{-}-Q_{A a}^{-} Q_{A b}^{+}=Q_{A a b} Q_{A}
$$

- We still have gauge-transformations and rotations

$$
\begin{equation*}
Q_{a} \rightarrow r Q_{a}, \quad Q_{a} \rightarrow H_{a}^{b} Q_{b}, \quad\left(H^{+}\right)_{a}^{b}=\left(H^{-}\right)_{a}^{b}, \tag{1.1}
\end{equation*}
$$

but also Hodge Duality

$$
\left(Q_{a}\right)^{\star} \rightarrow Q^{a} \propto \epsilon^{a b c d} Q_{b c d}
$$

- Q-systems are very general

Change source terms \Longrightarrow change representations
Change analytic properties \Longrightarrow change integrable model

Summarizing $\mathfrak{s u}_{n}$ Q-systems

■ $A \mathfrak{s u}_{N} Q$-system consists of functions $Q_{a}, Q_{a b}, Q_{a b c}, \ldots$ satisfying QQ-relations

$$
Q_{A a}^{+} Q_{A b}^{-}-Q_{A a}^{-} Q_{A b}^{+}=Q_{A a b} Q_{A}
$$

- The Q-functions transform under gauge-transformations, rotations and Hodge duality.
■ Philosophy from now on: Forget R-matrices, T,Y-functions etc and trust the Q-system.
- To get to QSC we need to generalize two aspects of the $\mathfrak{s u}_{N}$ Q-system:
- Supersymmetric Q-system
- Analytic properties beyond polynomiality.
- Q-systems for arbitrary (super-) Lie algebras are still an active research direction [Mukhin,Varchenko '05, Masoero Raimondo Valeri '15-18, Koroteev, Zeitin '18-21,Ferrando,Frassek,Kazakov,'20;SE,Shu,Volin'20 . . .]

Supersymmetric Q-systems I

■ Now: Supersymmetric Q-systems! For simplicity: $\mathfrak{s u}_{n \mid n}$.
■ Introduce two Q-systems: $Q_{a \mid \emptyset}, Q_{\emptyset \mid i}, a, i=1,2, \ldots, n$.
■ Connect through new functions $Q_{a \mid i}, Q_{\bar{\emptyset} \mid \bar{\emptyset}}$ that satisfy

$$
Q_{\emptyset \mid i} \propto \frac{Q_{a \mid i}^{ \pm}}{Q_{\bar{\emptyset} \mid \bar{\emptyset}}^{ \pm}} Q^{a \mid \emptyset}, \quad Q_{a \mid \emptyset} \propto \frac{Q_{a \mid i}^{+}}{Q_{\bar{\emptyset} \mid \bar{\emptyset}}^{+}} Q^{\emptyset \mid i}, \quad Q_{a \mid i}^{+}-Q_{a \mid i}^{-}=Q_{a \mid \emptyset} Q_{\emptyset \mid i} .
$$

■ We can then build functions $Q_{A \mid I}$ from $Q Q$-relations.

$$
\begin{aligned}
& Q_{A a \mid I}^{+} Q_{A b \mid I}^{-}-Q_{A a \mid I}^{-} Q_{A b \mid I}^{+}=Q_{A a b \mid I} Q_{A \mid I} \\
& Q_{A \mid I i}^{+} Q_{A \mid I j}^{-}-Q_{A \mid I i}^{-} Q_{A \mid I j}^{+}=Q_{A \mid I i} Q_{A \mid I j} \\
& Q_{A a \mid I i}^{+} Q_{A \mid I}^{-}-Q_{A a \mid I i}^{-} Q_{A \mid I}^{+}=Q_{A a \mid I} Q_{A \mid I i}
\end{aligned}
$$

Supersymmetric Q-systems II

- The supersymmetric QQ-relations also implies supersymmetric Nested Bethe Equations:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 0
\end{array}\right)
\end{aligned}
$$

- Once again there are symmetry transformations
- Rotations

$$
Q_{a \mid \emptyset} \rightarrow\left(H_{B}\right)_{a}{ }^{b} Q_{b \mid \emptyset}, \quad Q_{\emptyset \mid i} \rightarrow\left(H_{F}\right)_{i}{ }^{j} Q_{\emptyset \mid j},
$$

- Gauge-transformations

$$
Q_{a \mid \emptyset} \rightarrow r_{\mathrm{B}} Q_{a \mid \emptyset}, \quad Q_{\emptyset \mid i} \rightarrow r_{F} Q_{\emptyset \mid i},
$$

- Hodge

$$
Q_{a \mid \emptyset} \rightarrow Q^{a \mid \emptyset} \propto \epsilon^{a A} Q_{A \mid \bar{\emptyset}}, \quad Q_{\emptyset \mid i} \rightarrow Q^{\emptyset \mid i} \propto \epsilon^{i I} Q_{\bar{\emptyset} \mid I},
$$

Summary analytic Q-systems

■ $\mathrm{A} \mathfrak{s u}_{n \mid n} \mathrm{Q}$-system is built from functions $Q_{A \mid I}$. They satisfy QQ-relations

$$
\begin{aligned}
& Q_{A a \mid I}^{+} Q_{A b \mid I}^{-}-Q_{A a \mid I}^{-} Q_{A b \mid I}^{+}=Q_{A a b \mid I} Q_{A \mid I} \\
& Q_{A \mid I i}^{+} Q_{A \mid I j}^{-}-Q_{A \mid I i}^{-} Q_{A \mid I j}^{+}=Q_{A \mid I i} Q_{A \mid I j} \\
& Q_{A a \mid I i}^{+} Q_{A \mid I}^{-}-Q_{A a \mid I i}^{-} Q_{A \mid I}^{+}=Q_{A a \mid I} Q_{A \mid I i}
\end{aligned}
$$

- The QQ-relations encodes Nested Bethe Equations.

■ We can transform Q-functions using gauge-transformations, rotations and Hodge.
■ We are now ready to go to QSC!

Quantum spectral curve for $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$

Algebraic aspects of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$

- The underlying algebra for $\operatorname{AdS}_{5} \times S^{5}$ is $\mathfrak{p s u}_{2,2 \mid 4}$. As we have seen basic Q-functions comes in two flavours $\underbrace{Q_{a \mid \emptyset}=\mathbf{P}_{a}}_{\text {compact }}, \underbrace{Q_{\emptyset \mid i}=\mathbf{Q}_{i}}_{\text {non-compact }}$.
■ For the $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ QSC they are related by

■ Sometimes these functions are depicted on a Hasse diagram.

$\mathbf{P}_{a} \simeq_{u \rightarrow \infty} A_{a} u^{M_{a}}$
$\mathbf{Q}_{i} \simeq{ }_{u \rightarrow \infty} B_{i} u^{\hat{M}_{i}}$
$\Delta=\Delta^{(0)}+\gamma$

Quantum Spectral Curve of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ I

■ Simplest objects of QSC: $\mathbf{P}_{\mathrm{a}}, \mathbf{P}^{\mathbf{a}}$

$$
\mathbf{P}_{\mathrm{a}}, \mathbf{P}^{\mathrm{a}}
$$

Quantum Spectral Curve of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ I

■ Simplest objects of QSC: $\mathbf{P}_{\mathrm{a}}, \mathbf{P}^{\mathbf{a}}$ $\mathbf{P}_{\mathrm{a}}, \mathbf{P}^{\mathrm{a}}$

Quantum Spectral Curve of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ I

■ Simplest objects of QSC: $\mathbf{P}_{\mathrm{a}}, \mathbf{P}^{\mathbf{a}}$:

Quantum Spectral Curve of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ I

■ Simplest objects of QSC: $\mathbf{P}_{a}(u)$:

- Continuation is under control:

Quantum Spectral Curve of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ I

■ Simplest objects of QSC: $\mathbf{P}_{a}(u)$:

- Continuation is under control:

- How do we fix $\mu_{a b}$?

The $\mathbf{P} \mu$-system

■ The discontinuity of $\mu_{a b}$ on the cut on the real axis is computed as:

$$
\tilde{\mu}_{a b}-\mu_{a b}=\mathbf{P}_{a} \tilde{\mathbf{P}}_{b}-\tilde{\mathbf{P}}_{a} \mathbf{P}_{b},
$$

- The full $\mu_{a b}$ can then be restored by demanding anti-symmetry, $\operatorname{Pf}\left(\mu_{a b}\right)=1$ and mirror periodicity

$$
\tilde{\mu}_{a b}=\mu_{a b}^{[2]}
$$

■ Supplementing these equations with

$$
\tilde{\mathbf{P}}_{a}=\mu_{a b} \mathbf{P}^{b}
$$

gives the the $\mathbf{P} \mu$ system.
■ A consequence of the $\mathbf{P} \mu$-system is that all cuts are of quadratic. I.e

The remaining functions I

■ We cannot demand that all Q-functions, $\mathbf{Q}_{i}, Q_{a, i}, \ldots$ only have a short-cut. But we can demand that the full Q -system is analytic in the upper half-plane.

- Lets look at $Q_{a \mid i}$, it satisfies:

$$
\begin{aligned}
Q_{a \mid i}^{+}-Q_{a \mid i}^{-}=- & \mathbf{P}_{a} \mathbf{P}^{b} Q_{b \mid i}^{+} \\
& Q_{a \mid i}\left(u-\frac{i}{2}\right)=\left(\delta_{a}^{b}+\mathbf{P}_{a}(u) \mathbf{P}^{b}(u)\right) Q_{b \mid i}\left(u+\frac{i}{2}\right)
\end{aligned}
$$

■ Giving an analytic structure

The remaining functions II

- What about \mathbf{Q}_{i} ? From: $\mathbf{Q}_{i}=-Q_{a \mid i}^{ \pm} \mathbf{P}^{a}$ and $\mathbf{P} \mu$-system it is possible to deduce that \mathbf{Q}_{i} is a long-cut function.

- Furthermore, applying $Q_{a \mid i}^{-}$leads to the $\mathbf{Q} \omega$-system

$$
\tilde{\mathbf{Q}}_{i}=\omega_{i j} \mathbf{Q}^{j} \quad \tilde{\omega}_{i j}-\omega_{i j}=\mathbf{Q}_{i} \tilde{\mathbf{Q}}_{j}-\tilde{\mathbf{Q}}_{i} \mathbf{Q}_{j}
$$

where $\omega^{[2]}=\omega$ and is related to μ as

$$
\omega_{i j}=Q_{a \mid i}^{-} \mu^{a b} Q_{b \mid j}^{-}
$$

Summary of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$

- The $\mathrm{AdS}_{5} / \mathrm{CFT}_{4} \mathrm{QSC}$ is an analytic $\mathfrak{p s u}(2,2 \mid 4) \mathrm{Q}$-system.

■ The basic \mathbf{Q}-functions are $\mathbf{P}_{a}, \mathbf{Q}_{i}$. The asymptotics of these functions encodes quantum numbers.
■ One way of presenting the QSC is through the $\mathbf{P} \mu$ system

$$
\tilde{\mathbf{P}}_{a}=\mu_{a b}{\underset{\sim}{\text { Hodge Dual }}}_{\text {Rotations }}^{\text {Red }} \text {. } \tilde{\mu}_{a b}-\mu_{a b}=\mathbf{P}_{a} \tilde{\mathbf{P}}_{b}-\tilde{\mathbf{P}}_{a} \mathbf{P}_{b} .
$$

- The most important cut-structures

Extending the QSC
 (Monodromy Bootstrap for $\mathfrak{s u}_{2 \mid 2}$)

Monodromy Bootstrap

■ Want to study QSC with symmetry group $\mathfrak{s u}_{2 \mid 2}\left(\right.$ Really $\left.\mathfrak{g l}_{2 \mid 2}\right)$.
■ Informal idea: Monodromy around branch-point leads to a symmetry transformation of the Q-system

$$
\underbrace{\tilde{Q}=S \cdot Q}_{\text {"Crossing" }}
$$

- The precise way to proceed is given in [SE,Volin '21].

Monodromy bootstrap, technical details

■ Property 1: There exist a \mathcal{Q}-system, \mathcal{Q}, analytical in the upper half-plane.
■ Property 2: \mathbf{P}_{a} has a short-cut, \mathbf{Q}_{i} has a long-cut.
■ Property 3: There exist a symmetry transformations sending \mathcal{Q} to a gauge+rotations+Hodge Duality
lower half-plane analytic Q-system \mathcal{Q}^{\downarrow}.
■ The symmetry transformation depends on the path

Gluing two Q-systens

- Following these rules a classification of models was obtained [SE, Volin '21].
- Today: Focus only on the case that might be relevant for $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$.
■ Basic intuition: Need two UHPA Q-systems Q, \dot{Q} to describe "left-and right-movers".

■ Connect them through the Monodromy Bootstrap procedure

The $\mathbf{P} \mu$-system and $\mathbf{Q} \omega$-system

■ Working out the details one finds the following $\mathbf{P} \mu$-system

$$
\mathbf{P}_{a}^{\bar{\gamma}}=\mathbf{P}_{\dot{b}} \mu_{a}^{\dot{b}}, \quad\left(\mu_{a}^{\dot{b}}\right)^{\gamma}-\mu_{a}^{\dot{b}}=\mathbf{P}_{a}\left(\mathbf{P}^{\dot{b}}\right)^{\bar{\gamma}}-\left(\mathbf{P}_{a}\right)^{\gamma} \mathbf{P}^{\dot{b}}
$$

different Q-systems!

- Cuts are no longer quadratic!

■ The $\mathbf{Q} \omega$-system is
Opposite direction

$$
\left.\mathbf{Q}_{k}^{\bar{\gamma}}=\omega_{k}^{i} \mathbf{Q}_{i}, \quad\left(\omega_{k}\right)^{i}\right)^{\bar{\gamma}}-\omega_{k}^{i}=\mathbf{Q}_{k}\left(\mathbf{Q}^{i}\right)^{\bar{\gamma}}-\left(\mathbf{Q}_{k}\right)^{\gamma} \mathbf{Q}^{i} .
$$

The $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ Conjecture

- Conjecture: These equations describe the spectrum of planar string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ with pure RR-flux!
[SE,Volin '21][Cavaglià,Gromov,Stefanski,Torrielli, 21']

■ What will we compute?
■ Large volume limit, reproduce the Asymptotic Bethe Ansatz.

- Perturbative calculations for small length operators.

The $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ Quantum Spectral Curve Conjecture

Quick Background on $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ Integrability

■ What do we hope to study? [Babichenko, Stefanski, Zarembo '00]
String Sigma Model on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ with pure RR-flux

■ What do we know about the system?
■ World-sheet S-matrix has been bootstrapped! Asymptotic Bethe equations have been obtained. Elementary excitations have dispersion relation:[Borsato, Ohlsson-Sax, Sfondrini, Stefanski ' $\left.13,14,{ }^{\prime} 16\right]$

$$
E(p)=\sqrt{m^{2}+16 g^{2} \sin ^{2} \frac{p}{2}} \quad m= \pm 1,0
$$

- Since recently there is is a TBA [Frolov,Sfondrini 21]
- No easy checks at weak coupling (no data from dual CFT). (Some progress [Ohlsson-Sax,Sfondrini,Stefanski '14])

Large Volume Checks

- Recall the basic structure of the proposed QSC

■ S-matrix \Longrightarrow Asymptotic Bethe Equations. Try to match with exact BE in appropriate limit

$$
\begin{align*}
& \frac{Q_{1 \mid 1}^{+}}{Q_{1 \mid 1}^{-}}=1 \tag{4.16}\\
& \frac{Q_{1| |}^{[2]} \mathbf{Q}_{1}^{-}\left(\mathbf{Q}^{2}\right)^{-}}{Q_{1| |}^{[-2]} \mathbf{Q}_{1}^{+}\left(\mathbf{Q}^{2}\right)^{+}}=-1 \tag{4.17}\\
& \frac{Q_{1 \mid 1}^{+}}{Q_{1 \mid 1}^{-}}=1 \tag{4.18}\\
& \frac{Q_{i \mid \mathrm{i}}^{+}}{Q_{\dot{i} \mid \mathrm{i}}^{-}}=1 \tag{4.19}\\
& \frac{Q_{i| |}^{[2]} \mathbf{P}_{i}^{-}\left(\mathbf{P}^{\dot{2}}\right)^{-}}{Q_{\mathrm{i}| |}^{[-2]} \mathbf{P}_{i}^{+}\left(\mathbf{P}^{\dot{2}}\right)^{+}}=-1 \\
& \frac{Q_{i \mid \mathrm{i}}^{+}}{Q_{\mathrm{i} \mid \mathrm{i}}^{-}}=1
\end{align*}
$$

What are these equations

■ A simplified example of the equations:

$$
\left(\frac{x_{k}^{+}}{x_{k}^{-}}\right)^{L}=\prod_{\substack{j=1 \\ j \neq k}}\left(\frac{x_{k}^{+}-x_{j}^{-}}{x_{k}^{-}-x_{j}^{+}}\right)^{\eta} \frac{1-\frac{1}{x_{k}^{+} x_{j}^{-}}}{1-\frac{1}{x_{k}^{-} x_{j}^{+}}}(\sigma \bullet \bullet)^{2}\left(x_{k}, x_{j}\right)
$$

- x is the so-called Zhukovsky variable

$$
x+\frac{1}{x}=\frac{u}{g}
$$

$$
x(u)=\frac{1}{2 g}(u+\sqrt{u+2 g} \sqrt{u-2 g})
$$

- $\sigma^{\bullet \bullet}(x, y)$ is the dressing phase

Large Volume Checks

- For large volume approximation of QSC we need 2 assumptions:
- Q-functions scale as their asymptotics
- $\mu_{1}{ }^{2}, \mu_{\mathrm{i}}{ }^{2}$ have square root cuts!

■ In the limit it is possible to find a subset of Q-functions explicitly. Example:

$$
\mathbf{P}_{1} \propto x^{-\frac{L}{2}} \Sigma
$$

- ABA is then reproduced from QQ-relations and the additional dressing phases are constrained by $\mathbf{P}_{a}^{\gamma}=\mathbf{P}_{\dot{a}} \mu^{\dot{a}}{ }_{a}$ to satisfy crossing equations.
- The crossing equations match exactly those found in the study of the $\mathrm{AdS}_{3} / \mathrm{CFT}_{2} \mathrm{~S}$-matrix [Borsato,Ohlsson Sax,Sfondrini,Stefanski, Torielli' 13] (see also [Frolov,Sfondrini '21])

Summarizing $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ QSC

■ I have presented a proposal for a Quantum Spectral Curve for $A d S_{3} \times S^{3} \times T^{4}$ based on symmetry considerations and lessons from previous curves. (Procedure presented Monodromy bootstrap. [Cavaglì̀,Gromov,Stefanski, Torrielli, 21'] found it independently.)

- The curve reproduces the $A B A$ in the large volume limit and gives the correct crossing equations.
- So far I have only discussed massive modes. We expect massless to also be included by slightly changing some analytic properties.
- Extent of validity of $A B A$ should be in question. Important to actually solve the curve.

Solving the AdS_{3} QSC

What can we calculate

■ What are the challenges?
■ No results to compare against: Need both numerics and analytic weak coupling to double check.

- All analytical methods used in the past relies on quadratic branch cuts.

Review of $\mathcal{N}=4$ recipe

■ First: Quick review of numerical and analytical methods in $\mathcal{N}=4$
[Marboe,Volin'14, Gromov,Levkovich-Maslyuk,Sizov '15].
■ Step 1: Ansatz for \mathbf{P}_{a} :

Parameters to fix! ح

$$
\mathbf{P}_{a} \propto \sum_{n=-M_{a}}^{\infty} \frac{c_{a, n}}{x^{n}}
$$

■ Step 2: Reconstruct $\mu_{a b}$:

$$
\begin{aligned}
& \text { RH Problem: } \mu_{a b}^{\gamma}-\mu_{a b}=\mathbf{P}_{a} \mathbf{P}_{b}^{\gamma}-\mathbf{P}_{a}^{\gamma} \mathbf{P}_{b} \\
& \text { FD Equation: } \mu_{a b}^{[2]}=\left(\delta_{a}^{c}-\mathbf{P}_{a} \mathbf{P}^{c}\right) \mu_{c d}\left(\delta_{b}^{d}+\mathbf{P}^{d} \mathbf{P}_{b}\right)
\end{aligned}
$$

■ Step 3: Impose $\mathbf{P} \mu$

$$
\mathbf{P}_{a}^{\gamma}=\mu_{a b} \mathbf{P}^{b} \quad \mathbf{P}^{a}=\underbrace{\mathbf{P}_{a}}_{\left(\begin{array}{ccc}
0 & \chi^{a b} & 0 \\
0 & 0 & 1 \\
0 & -1 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)}
$$

AdS_{3}

■ Now to AdS_{3}. Simple " $\mathfrak{s l}_{2}$ sector". ($\mathcal{N}=4$ analogue $\operatorname{tr}\left(Z \nabla^{\mathcal{S}} Z\right)+\ldots, \mathcal{S}$ even $)$.
■ Technical challenge: $\mathbf{P}_{a}, \mathbf{P}_{\dot{a}}$ does not have square-root cuts

$$
\mathbf{P}_{a} \propto \sum_{n=-M_{a}}^{\infty} \frac{c_{a, n}}{x^{n}}
$$

Not good near cut

■ Can we find another object? Consider

$$
\begin{equation*}
\mathbf{P}_{a}^{2 \gamma}=W_{a}{ }^{b} \mathbf{P}_{b} \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { Regularised } \mu \underbrace{}_{a} \quad\left(\mu^{R}\right)_{a}^{\dot{b}}=\mu_{a}^{\dot{b}}+\mathbf{P}_{a}\left(\mathbf{P}^{\dot{b}}\right)^{\bar{\gamma}} \\
& \quad W_{a}^{b}=\left(\mu^{R}\right)_{a}^{\dot{c}}\left(\mu^{R}\right)_{\dot{c}}{ }^{b} .
\end{aligned}
$$

- We can restore $\mu_{a}{ }^{b}$ given the gluing matrix $N_{k}{ }^{i}$. It is defined by

$$
\begin{equation*}
\mathbf{Q}_{k}^{\gamma}(u)=N_{k}^{i} \mathbf{Q}_{j}(-u) . \tag{5.2}
\end{equation*}
$$

We considered only cases with $N_{k}{ }^{i}$ off-diagonal.

Formulating a weak coupling algorithm

■ Introduce a new object

$$
\begin{equation*}
\mathbb{P}_{a}=\left(W^{\ell}\right)_{a}{ }^{b} \mathbf{P}_{b}, \quad \quad \ell^{2 \gamma}=\ell-1 \tag{5.3}
\end{equation*}
$$

■ Then \mathbb{P}_{a} is a quadratic cut function. It can be parameterised as

$$
\mathbb{P}_{a}=\sum_{k=-\infty}^{\infty} \frac{d_{a, k}}{x^{k}}
$$

- Trick: Compute \mathbf{P}_{a}^{γ} in two different ways.

$$
\mathbb{P}_{a}^{\gamma}=\sum_{k=-\infty}^{\infty} d_{a, k} x^{k}, \quad \mathbb{P}_{a}^{\gamma}=\left(W^{\ell \gamma}\right)_{a}^{b}\left(\mu^{R}\right)_{b}{ }^{\dot{c}} \mathbf{P}_{\dot{c}}=\sum_{k=-\infty}^{\infty} \frac{\tilde{d}_{a, k}}{x^{k}}
$$

Find point where $d_{a, k}=\tilde{d}_{a,-k}$ using numerics.

Numerical results for $\mathcal{S}=2,4$

■ Implementing the numerical algorithm

■ From numerical data we find the following ansatz:

$$
\begin{aligned}
& \mathbf{P}_{a} \simeq_{x \rightarrow \infty} \sum_{a=-M_{a}}^{\infty} \frac{c_{a, n}}{x^{n}} \\
& \mathbf{P}_{a} \simeq_{x \rightarrow 1} \sum_{n} \frac{d_{a, n}^{(0)}}{x^{n}}+g \sum_{n} \frac{d_{a, n}^{(1)}}{x^{n}} \log \left(\frac{x-1}{x+1}\right)+g^{2} \sum_{n} \frac{d_{a, n}^{(2)}}{x^{n}} \log ^{2}\left(\frac{x-1}{x+1}\right)+\ldots
\end{aligned}
$$

Analytic Solution

■ Inverting W allows us to write

$$
\begin{equation*}
\mathbf{P}_{a}=\sum_{n=0}^{\infty} \frac{(-\ell)^{n}}{n!} \log (W)_{a}^{b} \mathbb{P}_{b} \tag{5.4}
\end{equation*}
$$

■ With this ansatz one proceeds to calculate μ and imposes the $\mathbf{P} \mu$-system.

- This closes the system and we find the anomalous dimension!

Analytic $\mathcal{S}=2$ results

- We found the following result

$$
\begin{aligned}
\gamma_{\mathcal{S}=2} & =12 g^{2}+\frac{864}{35 \pi} g^{3}+\left(-48-\frac{576}{7 \pi^{2}}\right) g^{4}+\left(-\frac{405504}{875 \pi^{3}}-\frac{51552}{143 \pi}\right) g^{5} \\
& +\left(444-\frac{70665216}{4375 \pi^{4}}+\frac{230121984}{175175 \pi^{2}}\right) g^{6} \\
& +\left(-\frac{16896}{35 \pi} \zeta_{3}-\frac{4965482496}{21875 \pi^{5}}+\frac{6791453184}{875875 \pi^{3}}+\frac{1102677696}{146965 \pi}\right) g^{7} \\
& +\left(-288 \zeta_{3}+\frac{1898496}{1225 \pi^{2}} \zeta_{3}-576 \zeta_{5}-5844\right. \\
& \left.\quad-\frac{302725824512}{109375 \pi^{6}}-\frac{9030729728}{25025 \pi^{4}}+\frac{25695082110528}{282907625 \pi^{2}}\right) g^{8}
\end{aligned}
$$

- Comparing with ABA

$$
\gamma_{\mathcal{S}=2}^{A B A}=12 g^{2}+\mathcal{O}(g)^{4} \Longrightarrow \frac{864}{35 \pi} g^{3} \quad \text { massless wrapping? }
$$

- Terms in brown agrees with $\mathcal{N}=4, \gamma_{\mathcal{S}=4} \rightarrow_{\pi \rightarrow \infty}=\gamma_{\mathcal{S}=2}^{\mathcal{N}=4}+\mathcal{O}(g)^{6}$

More general \mathcal{S} results

■ Using the same procedure we can find $\gamma_{\mathcal{S}}$ for \mathcal{S} even.

- Some easy patterns? Yes! Write

$$
\gamma_{\mathcal{S}}=f_{(2)}(\mathcal{S}) g^{2}+f_{(3)}(\mathcal{S}) g^{3}+f_{(4)}(\mathcal{S}) g^{4}+\mathcal{O}\left(g^{5}\right)
$$

then from data for $S=2,4,6,8$ we found the following results

$$
f_{(2)}(\mathcal{S})=8 S_{1}(\mathcal{S}) \quad f_{(3)}(\mathcal{S})=\frac{384}{35 \pi} S_{1}(\mathcal{S})^{2}
$$

as well as

$$
\begin{equation*}
f_{(4)}(\mathcal{S})=\Delta_{4}^{\mathcal{N}=4}-\frac{512}{21 \pi^{2}} S_{1}(S)^{3} \tag{5.5}
\end{equation*}
$$

with $S_{1}(S)=\sum_{k=1}^{S} \frac{1}{k}$.
■ Curiously the the expansion in g does not seem to commute with $S \rightarrow \infty$.

Summarizing Solving the Curve

■ While the proposed curve remains challenging it can be solved.

- Using a variety of techniques $\gamma_{\mathcal{S}=2}$ has been calculated up to g^{8}. The result contains ζ-values and inverse powers of π.
■ The method used extends to even \mathcal{S}. Will be important to also eventually study $\mathfrak{s u}_{2}$ sectors and more general settings.
■ Note that while the QSC is a conjecture it is a very sharp conjecture.
- Many open questions:

■ Can we find "massless wrapping terms" from standard Luscher corrections?

- Strong coupling numerically?
- Can we be sure there are no excited massless states?

Conclusions and Outlook

Conclusions

- The QSC for $\mathcal{N}=4$ is a powerful-integrability tool, it should be extended beyond $\mathcal{N}=4$,
- Using the structures of Q-systems it is possible to construct new QSC's. A method to do so is Monodromy Bootstrap.
■ Coupling two $\mathfrak{p s u}(1,1 \mid 2)$ Q-systems using Monodromy Bootsrap gives a curve which conjecturally describes the spectrum, in the planar limit, of string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$.
■ While challenging the conjectured curved can be solved both numerically and analytically in the weak coupling regime. This gives very precise predictions for the anomalous dimension.

Outlook

■ It would be interesting to see if the single $\mathfrak{p s u}(1,1 \mid 2)$ spectral could describe $\mathrm{AdS}_{2} / \mathrm{CFT}_{1}$ [Sorokin, Tseytin, Wulff,Zarembo '11]. Can we use results from [Hoare, Pittelli, Torrielli '14,'15]?
■ It would be very interesting to study QSCs based on symmetries beyond $\mathfrak{g l}_{m \mid n}$. In particular, $D_{2,1 \mid \alpha}$ is relevant for string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times S^{3} \times S^{1}$.

- It would be very interesting to compare our precise predictions with the $\mathrm{AdS}_{3} \mathrm{TBA}_{[\text {[Frolov,Sfondrini ' } 21] \text {. }}$
- Massless modes still need clarification, would be very interesting to compare with [Brollo,le Plat,Sfondrini,Suzuki '23]
- We could try to deform the curve in various ways:
- Fishchain? [Gromov,Sever,' 19]
- Deformations towards NS-flux sector [Hoare, Tseytlin ' 13]. (Compare with [Eberhardt,Gaberdiel,Gopakumar '18, 19])

Thank You

Thank You!

