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Introduction and setting the stage
The last two decades has seen an immense progress in solving
D = 4 planar N = 4 SYM.

Underlying reason: Integrability =

[Minahan,Zarembo,’02]
[Metsaev, Tseytlin,’02]

[+ A lot of work]

Mayor accomplishment: The spectral problem was solved!˙
O(x)Ō(y)

¸
∼ 1

|x−y |2∆ Computable!

Most efficient formulation? [Gromov, Kazakov,Leurent,Volin ’13’14]

The Quantum Spectral Curve

P̃a = —abPb
...

...Pa

P̃a
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What is the N = 4 QSC?
The QSC is a set of 256 Q-functions, they depend on 1 complex
parameter:u. The simplest Q-functions are called Pa;Pa

Pa(u)

Spectral parameter

Pa;Pa

Analytic continuation is controlled by the so-called P— system:
Pa P̃a = —abPb

P̃a = —abP
b ;

—̃ab − —ab = PaP̃b − P̃aPb :

The asymptotics encodes quantum numbers, in particular the
conformal dimension!

—12 ∼u→∞ u∆−J1

For reviews, see [Gromov ’17;Kazakov’18,Levkovich-Maslyuk ’19].
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Elevator pitch for N = 4 QSC

Analytic weak coupling computations
available ("Black box")
[Marboe,Volin 18’]

OK ∝ tr ΦIΦ
I

‚=12g2−48g4+336g6

+(−2496+576“3−1440“5)g8

+:::

Analytic continuation in spin
[Gromov,Levkovich-Maslyuk,Sizov ’15]

Structure constants
[Basso, Georgoudis, Klemenchuk Sueiro ’22]

There also exists many exciting variations and deformations:

Wilson Lines
ZL

[Gromov,Levkovich-Maslyuk ’15]

”- deformations

[Klabbers,van Tongeren ’17]

Fishnets

[Gromov et al ’17]
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What I will talk about
The success of QSC in N = 4 raises the question: Can we extend it
to other theories?
Yes! Already successfully done for

AdS4/CFT3 (ABJM) X
[Bombardelli, Cavaglià,Fioravanti,Gromov,Tateo ’17]

The Hubbard Model X
[Cavaglià, Cornagliotto,Mattelliano,Tateo ’15]

Today: Attempt to extend to AdS3/CFT2!
Why is this exciting?

First attempt to investigate an "unknown" CFT using QSC.
First attempt to bootstrap a consistent QSC and avoid the long
historical route of N = 4.

[Braun,Derkachov,Manashov ’98]
[Minahan,Zarembo, ’02]

[Beisert,Staudacher, ’05]

[Arutyunov,Frolov 09]
[Bombardelli et al ’09]

[Gromov et al ’09]

[Gromov et al ’13]

QSC
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Plan of the talk

1 Crash course on Q-systems

Q-system

Th
e QSC car

2 QSC generalities, the case of N = 4

3 Monodromy Bootstrap and AdS3/CFT2 conjecture.
4 Solving the curve.



7/51

Analytic Q-systems
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su2 spin chain I
Consider a homogeneous su2 spin chain. This model has an
R-matrix from which we can build a transfer-matrix

2 2

2

2

u

R(u) ∝ (u − i)PSym + (u + i)PASym

Polynomial

t(u) =
u

The eigenvalues of t(u): (Dressed Vacuum Form)

t(u) = (u − i
2)
LQ

[2]
1
Q1

+ (u + i
2)
LQ

[−2]
1
Q1

Q-function!

where f [n] = f (u + i
2n).

Q1 is a polynomial Q1 =
QM
i=1(u − ui ).

Asymptotic of Q1 encodes the quantum number M.
Polynomiality of t(u) implies Bethe equations

Q
[2]
1

Q
[−2]
1

˛̨̨̨
Q1=0

= −
“

u+ i
2

u− i
2

”L ˛̨̨̨
Q1

= 0



9/51

su2 spin chain II
Can introduce polynomial Q2 and write t(u) in polynomial form:

t(u) = Q
[2]
1 Q

[−2]
2 − Q

[−2]
1 Q

[2]
2

Q1; Q2 must satisfy the QQ/Wronskian-relation

Q+
1 Q

−
2 − Q−

1 Q
+
2 = Q∅̄ ≡ uL .

Symmetries of the system:
Gauge-transformations

Qa → r Qa; Q∅̄ → r+r−Q∅̄

H-rotations

Qa → Ha
bQb ; (H+)a

b = (H−)a
b

Benefits of QQ-system:
More efficient than Bethe equations.
Correctly deals with exceptional solutions.



10/51

suN Q-systems I
To go to sun attach a Q-"vector" to nodes on the Dynkin diagram

A3:
Qa Qab Qabc

where a = 1; : : : ; n.
The various Q-functions are related by functional equations:
QQ-relations:

Q+
AaQ

−
Ab − Q−

AaQ
+
Ab = QAabQA , Q∅̄ = uL .

Source term

∅̄ = 1234

QQ-relations leads to Nested Bethe Equations
Q

[2]
1

Q
[−2]
1

Q
[−1]
12

Q
[+1]
1

˛̨̨̨
˛
Q1=0

= −1

Q
[2]
12

Q
[−2]
12

Q
[−1]
1 Q

[−1]
123

Q
[+1]
1 Q

[+1]
123

˛̨̨̨
˛
Q12=0

= −1

Q
[2]
123

Q
[−2]
123

Q
[−1]
12

Q
[+1]
12

˛̨̨̨
˛
Q123=0

= −
 
u + i

2

u − i
2

!L ˛̨̨̨˛̨
Q1=0

0@ 2 −1 0
−1 2 −1
0 −1 2

1A
A3 Cartan Matrix
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suN Q-systems II

Symmetries of QQ-relations?

Q+
AaQ

−
Ab − Q−

AaQ
+
Ab = QAabQA

We still have gauge-transformations and rotations

Qa → r Qa ; Qa → Ha
b Qb ; (H+)a

b = (H−)a
b ; (1.1)

but also Hodge Duality

Q(3)Q(1)

(Qa)
? → Qa ∝ ›abcdQbcd

Q-systems are very general
Change source terms =⇒ change representations
Change analytic properties =⇒ change integrable model
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Summarizing sun Q-systems

A suN Q-system consists of functions Qa; Qab; Qabc ; : : : satisfying
QQ-relations

Q+
AaQ

−
Ab − Q−

AaQ
+
Ab = QAabQA :

The Q-functions transform under gauge-transformations, rotations
and Hodge duality.
Philosophy from now on: Forget R-matrices, T,Y-functions etc and
trust the Q-system.
To get to QSC we need to generalize two aspects of the suN
Q-system:

Supersymmetric Q-system
Analytic properties beyond polynomiality.

Q-systems for arbitrary (super-) Lie algebras are still an active
research direction [Mukhin,Varchenko ’05, Masoero Raimondo Valeri ’15-18, Koroteev,Zeitlin

’18-21,Ferrando,Frassek,Kazakov,’20;SE,Shu,Volin’20 . . . ]
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Supersymmetric Q-systems I
Now: Supersymmetric Q-systems! For simplicity: sun|n.
Introduce two Q-systems: Qa|∅; Q∅|i , a; i = 1; 2; : : : ; n.
Connect through new functions Qa|i ; Q∅̄|∅̄ that satisfy

Q∅|i ∝
Q±
a|i

Q±
∅̄|∅̄
Qa|∅ ; Qa|∅ ∝

Q+
a|i

Q+
∅̄|∅̄
Q∅|i ; Q+

a|i − Q−
a|i = Qa|∅Q∅|i :

We can then build functions QA|I from QQ-relations.

Q+
Aa|IQ

−
Ab|I − Q−

Aa|IQ
+
Ab|I = QAab|IQA|I

Q+
A|IiQ

−
A|Ij − Q−

A|IiQ
+
A|Ij = QA|IiQA|Ij

Q+
Aa|IiQ

−
A|I − Q−

Aa|IiQ
+
A|I = QAa|IQA|Ii
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Supersymmetric Q-systems II
The supersymmetric QQ-relations also implies supersymmetric
Nested Bethe Equations:

Q
[+1]
1|1

Q
[−1]
1|1

˛̨̨̨
˛̨
Q1|∅=0

= 1

Q
[2]
1|1Q

[−1]
1|∅ Q

[−1]
1|12

Q
[−2]
1|1 Q

[1]
1|∅Q

[1]
1|12

˛̨̨̨
˛̨
Q1|1=0

= −1

Q
[+1]
1|1

Q
[−1]
1|1

˛̨̨̨
˛̨
Q1|12=0

=

 
u + i

2

u − i
2

!L

0@ 0 −1 0
−1 2 −1
0 −1 0

1A

Once again there are symmetry transformations
Rotations

Qa|∅ → (HB)a
bQb|∅ ; Q∅|i → (HF)i

jQ∅|j ;

Gauge-transformations

Qa|∅ → rBQa|∅ ; Q∅|i → rFQ∅|i ;

Hodge

Qa|∅ → Qa|∅ ∝ ›aAQA|∅̄ ; Q∅|i → Q∅|i ∝ ›iIQ∅̄|I ;
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Summary analytic Q-systems

A sun|n Q-system is built from functions QA|I . They satisfy
QQ-relations

Q+
Aa|IQ

−
Ab|I − Q−

Aa|IQ
+
Ab|I = QAab|IQA|I

Q+
A|IiQ

−
A|Ij − Q−

A|IiQ
+
A|Ij = QA|IiQA|Ij

Q+
Aa|IiQ

−
A|I − Q−

Aa|IiQ
+
A|I = QAa|IQA|Ii

The QQ-relations encodes Nested Bethe Equations.
We can transform Q-functions using gauge-transformations,rotations
and Hodge.
We are now ready to go to QSC!
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Quantum spectral curve for AdS5/CFT4
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Algebraic aspects of AdS5/CFT4

The underlying algebra for AdS5× S5 is psu2;2|4. As we have seen
basic Q-functions comes in two flavours Qa|∅ = Pa| {z }

compact

; Q∅|i = Qi| {z }
non-compact

.

For the AdS5/CFT4 QSC they are related by
Pa = −Q±

a|iQ
i ; Q+

a|i − Q−
a|i = PaQi ; PaP

a = 0| {z }
psu2;2|4

:

Sometimes these functions are depicted on a Hasse diagram.

P1

P2

1

Ho
dg

e

P1

P2

1

Pa ≃u→∞ Aau
Ma

Qi ≃u→∞ Biu
M̂i

∆ = ∆(0) + ‚
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Quantum Spectral Curve of AdS5/CFT4 I

Simplest objects of QSC: Pa;Pa

Pa;Pa

2g−2g
g =

√
–

4ı

’t Hooft coupling
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Quantum Spectral Curve of AdS5/CFT4 I

Simplest objects of QSC: Pa;Pa

Pa;Pa
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Quantum Spectral Curve of AdS5/CFT4 I

Simplest objects of QSC: Pa;Pa:

Pa

...

...Pa

P̃a



21/51

Quantum Spectral Curve of AdS5/CFT4 I
Simplest objects of QSC: Pa(u):

Pa
Pa

P̃a

Continuation is under control:

∼

Pa = —abPb :

Hodge Dual

Rotation
—

...

...

How do we fix —ab?
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Quantum Spectral Curve of AdS5/CFT4 I
Simplest objects of QSC: Pa(u):

Pa
Pa

P̃a

Continuation is under control:

∼

Pa = —abPb :

Hodge Dual

Rotation
—

...

...

How do we fix —ab?
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The P—-system
The discontinuity of —ab on the cut on the real axis is computed as:

—̃ab − —ab = PaP̃b − P̃aPb ;

The full —ab can then be restored by demanding anti-symmetry,
Pf(—ab) = 1 and mirror periodicity

—̃ab = —
[2]
ab :

Supplementing these equations with

P̃a = —abP
b

gives the the P— system.
A consequence of the P—-system is that all cuts are of quadratic. I.e

=
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The remaining functions I
We cannot demand that all Q-functions, Qi ; Qa;i ; : : : only have a
short-cut. But we can demand that the full Q-system is analytic in
the upper half-plane.
Lets look at Qa|i , it satisfies:

Q+
a|i − Q−

a|i = −PaPbQ
+
b|i

Qa|i (u − i
2) =

`
‹ba + Pa(u)Pb(u)

´
Qb|i (u +

i
2)

Giving an analytic structure

Qa|i
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The remaining functions II

What about Qi? From: Qi = −Q±
a|iP

a and P—-system it is possible
to deduce that Qi is a long-cut function.

Qi

Furthermore, applying Q−
a|i leads to the Q!-system

Q̃i = !i jQ
j !̃i j − !i j = QiQ̃j − Q̃iQj

where ![2] = ! and is related to — as

!i j = Q−
a|i—

abQ−
b|j :
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Summary of AdS5/CFT4

The AdS5/CFT4 QSC is an analytic psu(2; 2|4) Q-system.
The basic Q-functions are Pa;Qi . The asymptotics of these
functions encodes quantum numbers.
One way of presenting the QSC is through the P— system

P̃a = —abPb :

Hodge Dual

Rotations

—̃ab − —ab = PaP̃b − P̃aPb :

The most important cut-structures

Pa

Short cut

Qi

Long cut

Qa|i

Ladder of cuts
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Extending the QSC
(Monodromy Bootstrap for su2|2)
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Monodromy Bootstrap

Want to study QSC with symmetry group su2|2 (Really gl2|2).
Informal idea: Monodromy around branch-point leads to a symmetry
transformation of the Q-system

∼

Q Q
Q̃ = S · Q| {z }
"Crossing"

The precise way to proceed is given in [SE,Volin ’21].
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Monodromy bootstrap, technical details

Property 1: There exist a Q-system, Q, analytical in the upper
half-plane.
Property 2: Pa has a short-cut, Qi has a long-cut.
Property 3: There exist a symmetry transformations| {z }

gauge+rotations+Hodge Duality

sending Q to a

lower half-plane analytic Q-system Q↓.
The symmetry transformation depends on the path

!h1 · Q—h2 · (Q)

Q↓
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Gluing two Q-systens
Following these rules a classification of models was obtained [SE,Volin

’21].
Today: Focus only on the case that might be relevant for
AdS3/CFT2.
Basic intuition: Need two UHPA Q-systems Q; Q̇ to describe
"left-and right-movers".

psu1;1|2 ⊕ psu1;1|2| {z }
Q-system

Q Q̇

Connect them through the Monodromy Bootstrap procedure

QQ̇
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The P—-system and Q!-system
Working out the details one finds the following P—-system

P‚̄a = Pḃ—
ḃ
a ; (—a

ḃ)‚ − —a
ḃ = Pa(P

ḃ)‚̄ − (Pa)
‚Pḃ :

different Q-systems!

Cuts are no longer quadratic!
P‚a P‚̄a

̸=

The Q!-system is

Q‚
k = !k

l̇Ql̇ ; (!k
l̇)‚̄ − !k

l̇ = Qk(Q
l̇)‚̄ − (Qk)

‚Ql̇ :

Opposite direction
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The AdS3/CFT2 Conjecture

Conjecture: These equations describe the spectrum of planar string
theory on AdS3× S3× T4 with pure RR-flux!
[SE,Volin ’21][Cavaglià,Gromov,Stefanski,Torrielli, 21’]

What will we compute?
Large volume limit, reproduce the Asymptotic Bethe Ansatz.
Perturbative calculations for small length operators.
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The AdS3/CFT2 Quantum Spectral Curve
Conjecture
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Quick Background on AdS3/CFT2 Integrability
What do we hope to study? [Babichenko, Stefanski, Zarembo ’09]

String Sigma Model on AdS3× S3× T4 with pure RR-flux

What do we know about the system?
World-sheet S-matrix has been bootstrapped! Asymptotic Bethe
equations have been obtained. Elementary excitations have dispersion
relation:[Borsato, Ohlsson-Sax, Sfondrini, Stefanski ’13,’14,’16]

E(p) =
q
m2 + 16g2 sin2 p

2
m = ±1; 0

massless modes, new feature

Since recently there is is a TBA [Frolov,Sfondrini 21’]

No easy checks at weak coupling (no data from dual CFT). (Some
progress [Ohlsson-Sax,Sfondrini,Stefanski ’14])
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Large Volume Checks
Recall the basic structure of the proposed QSC

psu1;1|2 ⊕ psu1;1|2| {z }
Q-system

Pa Pȧ

S-matrix =⇒ Asymptotic Bethe Equations. Try to match with
exact BE in appropriate limit

Q+
1|1

Q−
1|1

= 1

Q
[2]
1|1Q

−
1 (Q

2)−

Q
[−2]
1|1 Q+

1 (Q
2)+

= −1

Q+
1|1

Q−
1|1

= 1

Q+
1̇|1̇

Q−
1̇|1̇

= 1

Q
[2]

1̇|1̇P
−
1̇
(P2̇)−

Q
[−2]

1̇|1̇ P+
1̇
(P2̇)+

= −1

Q+
1̇|1̇

Q−
1̇|1̇

= 1
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What are these equations

A simplified example of the equations:

“
x+k
x−k

”L
=
Q
j=1
j ̸=k

„
x+k −x−j
x−k −x+j

«” 1− 1

x+
k
x−
j

1− 1

x−
k
x+
j

(ff••)2(xk ; xj)

” = ±1; 0

x is the so-called Zhukovsky variable

x +
1

x
=
u

g

x(u) = 1
2g (u +

√
u + 2g

√
u − 2g)

ff••(x; y) is the dressing phase



36/51

Large Volume Checks

For large volume approximation of QSC we need 2 assumptions:
Q-functions scale as their asymptotics
—1

2̇; —1̇
2 have square root cuts!

In the limit it is possible to find a subset of Q-functions explicitly.
Example:

P1 ∝ x−
L
2 Σ

ABA is then reproduced from QQ-relations and the additional
dressing phases are constrained by P‚a = Pȧ—ȧa to satisfy crossing
equations.
The crossing equations match exactly those found in the study of
the AdS3/CFT2 S-matrix [Borsato,Ohlsson Sax,Sfondrini,Stefanski,Torielli ’13] (see also
[Frolov,Sfondrini ’21])
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Summarizing AdS3/CFT2 QSC

I have presented a proposal for a Quantum Spectral Curve for
AdS3× S3×T4 based on symmetry considerations and lessons from
previous curves. (Procedure presented Monodromy bootstrap.
[Cavaglià,Gromov,Stefanski,Torrielli, 21’] found it independently.)
The curve reproduces the ABA in the large volume limit and gives
the correct crossing equations.
So far I have only discussed massive modes. We expect massless to
also be included by slightly changing some analytic properties.
Extent of validity of ABA should be in question. Important to
actually solve the curve.
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Solving the AdS3 QSC
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What can we calculate

What are the challenges?
No results to compare against: Need both numerics and analytic
weak coupling to double check.
All analytical methods used in the past relies on quadratic branch
cuts.
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Review of N = 4 recipe
First: Quick review of numerical and analytical methods in N = 4
[Marboe,Volin’14, Gromov,Levkovich-Maslyuk,Sizov ’15].
Step 1: Ansatz for Pa:

Pa ∝
P∞

n=−Ma

ca;n
xn

Parameters to fix!
...

...

u

x + 1
x = u

g

Step 2: Reconstruct —ab:
RH Problem: —‚ab − —ab = PaP

‚
b − P‚aPb

FD Equation: —[2]
ab = (‹ca − PaPc)—cd(‹db + PdPb)

Step 3: Impose P—

P‚a = —abPb Pa = fflabPa0BB@
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

1CCA
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AdS3

Now to AdS3. Simple "sl2 sector". (N = 4 analogue
tr
`
Z∇SZ

´
+ : : : ,S even).

Technical challenge: Pa;Pȧ does not have square-root cuts
Pa ∝

P∞
n=−Ma

ca;n
xn

Not good near cut

Can we find another object? Consider

P2‚
a = W a

bPb ; (5.1)

where

W a
b = (—R)a

ċ(—R)ċ
b:

Regularised — (—R)a
ḃ = —a

ḃ + Pa(Pḃ)‚̄

We can restore —ab given the gluing matrix Nk l̇ . It is defined by

Q‚
k(u) = Nk

l̇Ql̇(−u) : (5.2)

We considered only cases with Nk l̇ off-diagonal.
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Formulating a weak coupling algorithm

Introduce a new object

Pa = (W ‘)a
bPb ; ‘2‚ = ‘− 1 : (5.3)

Then Pa is a quadratic cut function. It can be parameterised as

Pa =
∞X

k=−∞

da;k
xk

:

Trick: Compute P‚a in two different ways.

P‚a =
∞X

k=−∞
da;kx

k ; P‚a = (W ‘‚ )a
b(—R)b

ċPċ =
∞X

k=−∞

d̃a;k
xk

:

Find point where da;k = d̃a;−k using numerics.
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Numerical results for S = 2; 4
Implementing the numerical algorithm

0.02 0.04 0.06 0.08
g

0.02

0.04

0.06

0.08

0.10

0.12
γ

S = 4
0.02 0.04 0.06 0.08 0.10

g

0.05

0.10

0.15

γ

S = 2

From numerical data we find the following ansatz:

Pa ≃x→∞
P∞

a=−Ma

ca;n
xn

Pa ≃x→1
P

n
d
(0)
a;n

xn + g
P

n
d
(1)
a;n

xn log
“
x−1
x+1

”
+ g2

P
n
d
(2)
a;n

xn log2( x−1
x+1) + : : :
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Analytic Solution

Inverting W allows us to write

Pa =
∞X
n=0

(−‘)n
n!

log(W )a
bPb ; (5.4)

With this ansatz one proceeds to calculate — and imposes the
P—-system.
This closes the system and we find the anomalous dimension!
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Analytic S = 2 results
We found the following result

‚S=2 = 12 g2 +
864

35ı
g3 + (−48− 576

7ı2
)g4 +

„
−405504

875ı3
− 51552

143ı

«
g5

+ (444− 70665216

4375ı4
+

230121984

175175ı2
)g6

+ (−16896

35ı
“3 −

4965482496

21875ı5
+

6791453184

875875ı3
+

1102677696

146965ı
)g7

+ (−288“3 +
1898496

1225ı2
“3 − 576“5 − 5844

− 302725824512

109375ı6
− 9030729728

25025ı4
+

25695082110528

282907625ı2
)g8

Comparing with ABA

‚ABAS=2 = 12g2 +O(g)4 =⇒ 864

35ı
g3 massless wrapping?

Terms in brown agrees with N = 4, ‚S=4 →ı→∞= ‚N=4
S=2 +O(g)6
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More general S results

Using the same procedure we can find ‚S for S even.
Some easy patterns? Yes! Write

‚S = f(2)(S)g2 + f(3)(S)g3 + f(4)(S)g4 +O(g5) ;

then from data for S = 2; 4; 6; 8 we found the following results
f(2)(S) = 8S1(S) f(3)(S) = 384

35ı S1(S)
2

as well as
f(4)(S) = ∆N=4

4 − 512

21ı2
S1(S)

3 : (5.5)

with S1(S) =
PS

k=1
1
k .

Curiously the the expansion in g does not seem to commute with
S → ∞.
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Summarizing Solving the Curve

While the proposed curve remains challenging it can be solved.
Using a variety of techniques ‚S=2 has been calculated up to g8.
The result contains “-values and inverse powers of ı.
The method used extends to even S. Will be important to also
eventually study su2 sectors and more general settings.
Note that while the QSC is a conjecture it is a very sharp conjecture.
Many open questions:

Can we find "massless wrapping terms" from standard Luscher
corrections?
Strong coupling numerically?
Can we be sure there are no excited massless states?
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Conclusions and Outlook
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Conclusions

The QSC for N = 4 is a powerful-integrability tool, it should be
extended beyond N = 4,
Using the structures of Q-systems it is possible to construct new
QSC’s. A method to do so is Monodromy Bootstrap.
Coupling two psu(1; 1|2) Q-systems using Monodromy Bootsrap
gives a curve which conjecturally describes the spectrum, in the
planar limit, of string theory on AdS3×S3× T4.
While challenging the conjectured curved can be solved both
numerically and analytically in the weak coupling regime. This gives
very precise predictions for the anomalous dimension.
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Outlook

It would be interesting to see if the single psu(1; 1|2) spectral could
describe AdS2/CFT1 [Sorokin,Tseytlin,Wulff,Zarembo ’11]. Can we use results from
[Hoare, Pittelli, Torrielli ’14,’15]?
It would be very interesting to study QSCs based on symmetries
beyond glm|n. In particular, D2;1|¸ is relevant for string theory on
AdS3×S3×S3×S1.
It would be very interesting to compare our precise predictions with
the AdS3 TBA [Frolov,Sfondrini ’21].
Massless modes still need clarification, would be very interesting to
compare with [Brollo,le Plat,Sfondrini,Suzuki ’23]

We could try to deform the curve in various ways:
Fishchain? [Gromov,Sever,’19]

Deformations towards NS-flux sector [Hoare,Tseytlin ’13]. (Compare with
[Eberhardt,Gaberdiel,Gopakumar ’18,’19])
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Thank You

Thank You!
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