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Motivation

• The study of the supercharge -cohomology in supersymmetric field 
theories dates back to Witten's seminal paper: Constraints on 
supersymmetry breaking


• By Witten's argument, the Euler characteristic of the -cohomology, 
namely the Witten index, is independent of couplings; however, how the  

-cohomology itself depends on the couplings remains an open question.
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Motivation

• It was conjectured that the spectrum of -cohomology classes in the 
 super-Yang-Mills (SYM) is tree-level (classically) exact. [Kinney-

Maldacena-Minwalla-Raju’05, Grant-Grassi-Kim-Minwalla’08, …]


• This non-renormalization conjecture opened a window for studying the 
microstates of black holes in the gravity dual of the  SYM at strong 
't Hooft coupling via constructing and manipulating the -cohomology 
classes at weak coupling, and motivated a series of recent works. [CC-
Lin’22, Choi-Kim-Lee-Park’22, … many others]
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BPS state/operators
• Consider the  supersymmetry: 


 ,    


• The BPS states :           


(BPS bound: )


• Standard Hodge theory argument:


BPS states    -cohomology

𝒩 = 2

{Q, Q†} = H − EBPS ≡ Δ Q2 = 0 = Q†2

|Ψ⟩ H |Ψ⟩ = EBPS |Ψ⟩ ⇔ Q |Ψ⟩ = 0 = Q† |Ψ⟩
E ≥ EBPS

⟷ Q
{ |Ψ⟩ Q |Ψ⟩ = 0}

{ |Ψ⟩ |Ψ⟩ = Q |Ψ′￼⟩}



Witten index
• The Witten index is the Euler characteristic of the -cohomology





• Witten argued that:


1.   is independent of 


2.   is independent of coupling constants in , (as long as the Hilbert space 
is unchanged).


• How does the -cohomology (BPS spectrum) depend on the couplings?

Q

I = Tr (−1)Fe−βΔ = TrBPS (−1)F = TrQ-coho (−1)F

I β

I H

Q



Quantum phase transition
• In CMT, one studies the space of Hamiltonians. 


• Two points, 1 and 2, in this space belong to the same phase if there exists 
a path from 1 to 2 such that the gap above the ground states does not 
close, i.e., the Hilbert space of the ground states is preserved.





  a local unitary


(In general, )

P2 = UP1U†

U = Pei ∫ F(s)ds

H2 ≠ UH1U†

 Hamiltonians

  ground space 


            projectors

H1, H2
P1, P2H1

H2



“Phases” of SUSY theories
• Let us consider the space of supercharges.


• Definition:  and  are in the same phase if  a path from 1 to 2, s.t. 
the -cohomology is preserved, i.e., the BPS subspace is preserved.


 


 a local invertible


 might not preserve BPS 

subspace, .

Q1 Q2 ∃
Q

Q2 = MQ1M−1

M = Pe ∫2
1 F(s)ds

M
P2 ≠ MP1M−1

  BPS subspace 

            projectors
P1, P2

Q1
Q2



Non-renormalization conjectures

• Weak conjecture: There is no (codimension one) phase boundary. Phase 
transition can only occur at discrete points, usually free points.


• Strong conjecture: The -cohomology is tree-level (classically) exact.


                      ,  so the BPS spectrum is 1-loop exact. 

Q

{Qtree, Q†
tree} = Δ1−loop



Example 1:  SYK model𝒩 = 2
•  SYK model: complex fermions  for    [Fu-Gaiotto-Maldacena-Sachdev’16]





• The states are constant differential forms: 


 ,     ,     (  is a -form)


•  acts as a wedge product:           (  is a -form)

𝒩 = 2 ψi i = 1,⋯, N

Q =
N

∑
i,⋯,iq=1

Ci1⋯iqψ
i1⋯ψ iq

|α⟩ =
1
p!

N

∑
i1,⋯,ip=1

αi1⋯ipψ
i1⋯ψ ip |Ω⟩ ψ i ↔ dxi α p

Q α ↦ C ∧ α C q

https://arxiv.org/abs/1610.08917


Example 1:  SYK model𝒩 = 2
• The BPS spectrum ( -cohomology) is invariant under generic deformation 

of coupling . Both the weak and strong conjectures are true in this 
example.


• A side comment: The BPS spectrum exhibits a very interesting R-charge 
concentration property — the BPS states in a cochain complex all have 
the same R-charge.


• This property is closely related to the low-energy supersymmetric JT. 
[Chang-Chen-Sia-Yang’24]

Q
Ci1⋯iq

https://arxiv.org/abs/2412.06902


Example 2: Sigma model
• Consider a supersymmetric particle on a manifold  with coordinates  

and superpartners . The states are differential forms:  





• The supercharge   is the de Rham differential.


• -cohomology = de Rham cohomology

ℳ xi

ψ i

|α⟩ =
1
p!

N

∑
i1,⋯,ip=1

αi1⋯ip(x) ψ i1⋯ψ ip |Ω⟩

Q = piψ i = dxi ∂
∂xi

= d

Q



Adding superpotential
• Adding a superpotential  to the system, the supercharge becomes





• The -cohomology is independent of deformations of  and the metric  
of the manifold, as long as the manifold is compact and smooth, and the 
superpotential is finite.


• The weak conjecture is true. 

h(x)

Q = (gij
·xj + i

∂h
∂xi ) ψ i = e−hQh=0eh

Q h gij



Strong conjecture?
• Consider perturbation theory around the free points (large mass limit), i.e., 

around each critical point 


 ,    .


• For each critical point, there is one BPS state whose form-degree (fermion 
number) equals the number of negative eigenvalues of  (the Morse index).


• These BPS states may receive instanton corrections and get lifted.


• The strong conjecture is not true.

∂h/∂xi = 0

h = mijxixj + O(x3) E.V.(mij) ≫ 1

mij



Expample 3: D1-D5 CFTs
• For CFTs, there are usually two choices of quantization.


1. On   a continuous spectrum. Usually, the ground is inside 
the continuum. If the ground state is separated by a gap, then the 
theory is topological.


2. On   a discrete spectrum (for compact CFT). The states 
correspond one-to-one to local operators on .


• We would consider the  case in which  (a conformal 
supercharge).


• The space of  is the superconformal manifold.

ℝ1,d−1 ⟶

Sd−1 × ℝ ⟶
ℝd

Sd−1 × ℝ Q† = S

Q



Expample 3: D1-D5 CFTs
• In the superconformal manifold of the D1-D5 CFTs, there is a special point 

that the theory is described by a symmetric orbifold


        for    or  


• We study the conformal perturbation theory around this orbifold point.


• For , up to the order we computed, the -cohomology under the 
first-order deformation exactly matches the known exact BPS partition 
function. 


• This provides evidence for the strong conjecture in this case.

SymN(M4) M4 = T4 K3

N = 2 Q



 SYM𝒩 = 4



BPS operators in  SYM𝒩 = 4
• State/operator correspondence:    


•  SYM has 16 supercharges and 16 conformal supercharges


• Pick one supercharge  and one conformal supercharge 


• Supersymmetry algebra: 
,      : dilatation


• -BPS operators:  with     

O ↔ |O⟩

𝒩 = 4

Q ≡ Q4
− S = Q†

Δ ≡ 2{Q, Q†} = D − J1 − J2 − q1 − q2 − q3 ≥ 0 D

1/16 O Δ = 0 ⇔ QO = 0 = Q†O



BPS operators in  SYM𝒩 = 4
• Consider  SYM with  gauge group.


• All operators are  invariant composites of fundamental fields with 
covariant derivatives.


• Fundamental fields and derivatives (letters):


 matrix:     


𝒩 = 4 U(N)

U(N)

N × N Φ[IJ] , ΨIα , ΨI·α , Aμ , Dμ = ∂μ − iAμ

SU(4)R : I = 1,⋯,4 , SO(1,3) : μ = 0,⋯,3, SU(2) × SU(2) : α, ·α = ±



BPS Letters
• BPS letters ( ):


- Fields:    


- Derivatives:                                     


• BPS superfield (a generating function) with auxiliary variables :   
commuting,  anti-commuting variables [Grant-Grassi-Kim-Minwalla’08, CC-Yin’13]


   


• It satisfies .

Δ = 0

ϕi ≡ Φ4i , ψi ≡ − iΨi+ , λ ·α ≡ Ψ4·α , f ≡ Fμν(σμν)++

D ·α ≡ (σμ)+ ·αDμ (i = 1,2,3)

(z+, z−, θ1, θ2, θ3) z±

θi

Ψ(z+, z−, θ1, θ2, θ3) = − i
∞

∑
n=0

(z ·αD ·α)n

n!
z

·βλ ·β

n + 1
+ 2θiϕi + ϵijkθiθjψk + 4θ1θ2θ3 f

Ψ(zα, θi) |zα=0,θi=0 = 0

https://arxiv.org/abs/0803.4183
https://arxiv.org/abs/1305.6314


Superconformal manifold
• The superconformal manifold of the  SYM is parametrized by the 

complexified coupling





• The free point is at , where any gauge invariant made out of  is a 
BPS operator, because  .


• For example:

𝒩 = 4

τ =
θ

2π
+

4πi
g2

YM

τ = i∞ Ψ
QΨ = 0

Tr[ψ1ϕ1] Tr[λ+D1D2 f ] = Tr[∂θ2
∂θ3

Ψ∂θ1
Ψ] Tr[∂z+Ψ∂z+∂z−∂θ1

∂θ2
∂θ3

Ψ]
zα=θi=0



Tree-level cohomology

• At the tree-level (classical), the -action becomes


 


and satisfies the Leibniz rule:   .


• The tree-level cohomology differs from the free cohomology.


• For example,  is -closed but  is not.

Q

Q(Ψ) = Ψ2

Q(AB) = Q(A)B + (−1)|A|AQ(B)

Tr (ϕ1ϕ2{ϕ1, ϕ2}) Q Tr (ϕ1ϕ2[ϕ1, ϕ2])



Cohomology classes at N = ∞
• Introduce formal variables: anticommuting  and commuting 





    Supercharge action:    


• Single-trace cohomology classes:  expanding 





 ,    

dzα dθi

dΨ ≡ dz ·α ∂z ·αΨ + dθi ∂θi
Ψ

QdΨ = [Ψ, dΨ]

Tr [(dΨ)n]
∂p1

z+∂p2
z−∂q1

θ1
∂q2

θ2
∂q3

θ3
Tr[(∂z+Ψ)k1(∂z−Ψ)k2(∂θ1

Ψ)m1(∂θ2
Ψ)m2(∂θ3

Ψ)m3

symmetrize

]
zα=0=θi

pα, mi ∈ ℤ≥0 qi, kα = 0,1



Single-trace cohomology and Gravitons
• At infinite , all the -cohomology classes are given by the product 

.


• Under the AdS/CFT correspondence, the single traces  or the cyclic 
cohomology classes are dual to single-graviton states in .


• We verified this by matching the Beti numbers of the single-trace cohomology with 
the number of single graviton states. [CC-Yin’13]


• The products  are dual to multi-graviton states.


• Since , multi-gravitons are products of single-gravitons.

N Q
Tr [(dΨ)n1]⋯Tr [(dΨ)nK]

Tr [(dΨ)n]
AdS5 × S5

Tr [(dΨ)n1]⋯Tr [(dΨ)nL]

GN ∼ 1
N2 → 0

https://arxiv.org/abs/1305.6314


Cohomology at Finite N
• The Hilbert space of operators at finite  can be realized as a quotient:





 : space of multi-traces (  Hilbert space)


 :  finite  Hilbert space,         :  space of trace identities


• A short exact sequence (SES):





 :  inclusion map,     :  quotient map that imposes the trace identities

N

ℋN ≅ ℋ∞ / IN

ℋ∞ N = ∞
ℋN N IN

0 → IN → ℋ∞ → ℋN → 0

i π

i π

(e.g.  for )2Tr X3 = 3Tr X Tr X2 − (Tr X)3 N = 2



Cohomology at Finite N
• Since the maps  and  commutes with the supercharge , we have








• Some of the cohomology classes (monotone classes) at finite  are 
given by imposing trace identities on the infinite  cohomology classes 





• Fortuitous classes are defined by the quotient   [CC-Lin’24]

π i Q

Hn(IN) → Hn(ℋ∞) → Hn(ℋN)
im (i*) = ker (π*)

N
N

Hn(ℋ∞)/im i* ≅ im π* ⊂ Hn(ℋN)

Hn(ℋN)/im π*

i* π*

https://arxiv.org/abs/2402.10129


Comments on the bulk duals
• Conjecture [CC-Lin'24]: 


- Monotone classes  Microstates of horizonless geometries 

- Fortuitous classes  Microstates of black holes   


• Evidence/checks:  

- (Generalized) LLM geometries  monotone states in  SYM [CC-
Lin'24]


- Superstrata geometries  monotone states in D1-D5 CFTs [CC-Lin-Zhang’25]

↔

↔

↔ 𝒩 = 4

↔

https://arxiv.org/abs/2402.10129
https://arxiv.org/abs/2402.10129
https://arxiv.org/abs/2402.10129
https://arxiv.org/abs/2501.05448


BPS black holes
IIB String Theory on   4d   SYM


• Supersymmetric black holes in  preserving two supercharges 
[Gutowski-Reall’04, Chong-Cvetic-Lu-Pope’05, Kunduri-Lucietti-Reall’06]


    Minimally-supersymmetric (1/16 BPS) states in  SYM


• These black holes carry five angular momenta:


Rotations in :   and  .        Rotations in :  , , and 


•  and the entropy 

AdS5 × S5 ⟷ SU(N) 𝒩 = 4

AdS5 × S5

⟷ 𝒩 = 4

AdS5 J1 J2 S5 q1 q2 q3

Ji, qa ∼ N2 S ∼ N2

https://arxiv.org/abs/hep-th/0401129
https://arxiv.org/abs/hep-th/0506029
https://arxiv.org/abs/hep-th/0601156


A very intuitive argument:


• Horizonless geometries have a “smooth” 
 limit — They can be viewed as 

coherent states of gravitons, and 
disassemble into non-interacting gravitons as 

.


• It is highly unlikely for a BPS horizonless 
solution to become non-BPS as .


• Black hole geometries usually become 
singular when  (without increasing 
their energy). For example, BPS BHs in .

GN → 0

GN → 0

GN → 0

GN → 0
AdS5

N

E

EBPS

N

E

Nc

EBPS



Tests of the non-renormalization  
conjectures



-BPS Schur sector1/8
• The -BPS Schur sector can be defined by a -cohomology and is 

described by a 2d super-chiral algebra. [Beem-Lemos-Liendo-Peelaers-Rastelli-van 
Rees’13]


• The -cohomology is isomorphic to the -cohomology with 
constraints  and . [CC-Lin-Wu’23]


• Due to the rigidity of the chiral algebra. We can argue that the strong 
conjecture is true in this case.


• Generalization: In  SCFT, the -cohomology is tree-level 
(classically) exact for exactly marginal couplings.

1/8 (Q + S)

(Q + S) Q
∂θ3

Ψ = 0 ∂z2
Ψ = 0

𝒩 = 2 (Q + S)

https://arxiv.org/abs/1312.5344
https://arxiv.org/abs/1312.5344
https://arxiv.org/abs/2310.20086


-BPS chiral ring sector1/8
• The chiral ring is generated by the  chiral superfields  and , whose 

bottom components are  and . 


• The superpotential gives the chiral relations: .


• The chiral ring sector is a subsector of the monotone sector given by products 
of the single traces





• Does the chiral ring receive quantum corrections?

𝒩 = 1 Φi Wα
ϕi = ∂θi

Ψ λα = ∂zαΨ

[ϕi, ϕj] = [ϕi, λα] = [λα, λβ] = 0

Tr[(∂z+Ψ)k1(∂z−Ψ)k2(∂θ1
Ψ)m1(∂θ2

Ψ)m2(∂θ3
Ψ)m3

symmetrize

]
zα=0=θi



S-duality test
• The  SYM theory enjoys the S-duality, which maps the theory with 

gauge group  and complexified gauge coupling 





to the theory with gauge group  (the Langlands dual of ) and 
complexified gauge coupling .


• Since the dual pair admits weak coupling descriptions near two different 
points on the space of couplings, the S-duality provides a powerful tool 
for testing the non-renormalization conjecture.

𝒩 = 4
G

τ =
θ

2π
+

4πi
g2

YM
LG G

−1/τ



S-duality test

• The dual pair with gauge groups  and  does not give any 
non-trivial checks because the -cohomology depends only on the Lie 
algebra of the gauge group. 


• To perform nontrivial checks, we consider the gauge groups  
and .

SU(N) PSU(N)
Q

SO(2N + 1)
USp(2N)



Matching on the Coulomb branch

• Let us move on to a generic point on the Coulomb branch. The gauge 
group is broken to its maximal torus .


• In convenient basses, for the Cartan-valued superfield  takes the block 
off-diagonal forms:


     

U(1)N

Ψ

ΨSO =
0 iΨD 0

−iΨD 0 0
0 0 0

, ΨUSp = (ΨD 0
0 −ΨD) .



Matching on the Coulomb branch

• After removing the zero column and row in , the matrices  and 
 are related by a conjugation. Hence, the cohomologies must agree.


• The Coulomb-branch cohomology embeds into the monotone 
cohomology. 


• This is because the fortuitous cohomology is identified with a subspace of 
the cohomology of trace relations, and all trace relations vanish identically 
on the Coulomb branch.

ΨSO ΨSO
ΨUSp



Search for non-Coulomb branch classes

• We focus on the simplest dual pair:  and .


• Focusing on the BMN sector ( ), Gadde-Lee-Raj-Tomar found the 
first fortuitous class in the  theory with charges 

, which has no S-dual in the  
theory in the BMN sector.


• If the strong conjecture is true, then there must exist a non-Coulomb branch 
class with the same charges in the  theory outside the BMN sector.


• We did an exhaustive search and did not find any such a class.

SO(7) USp(6)

∂zαΨ = 0
SO(7)

(J1, J2, q1, q2, q3) = ( 1
2 , 1

2 , 5
2 , 5

2 , 5
2 ) USp(6)

USp(6)

https://arxiv.org/abs/2506.13887


Violation of S-duality
• We constructed the cohomology classes up to 

, and found that the and 
 cohomology classes agree, except

L = 3J1 + 3J2 + 2q1 + 2q2 + 2q3 = 18 SO(7)
USp(6)

BMN chiral ring



Conclusion

• The strong conjecture is false in the  SYM, i.e., the -cohomology 
must receive loops or non-perturbative corrections.


• The weak conjecture can still be correct, i.e., after taking into account the 
perturbative and non-perturbative corrections near the free points, the 
-cohomology is independent of the coupling.


• Very surprisingly, the fortuitous class in the BMN sector should be paired 
with a monotone class in the chiral ring sector.

𝒩 = 4 Q

Q



Conclusion

• Such a chiral ring element should vanish when going onto the Coulomb 
branch, because the Coulomb-branch cohomology respects the S-duality.


• Naively, this sounds like a contradiction. Since the chiral ring elements are 
mutually commuting, they should reside in the Cartan subalgebra.


• However,  admits a commuting triple not simultaneously conjugate 
into the Cartan subalgebra. [Borel-Freedman-Morgan’1999]


• In general, non-Cartan commuting -tuple exists in  and . 

SO(7)

N BN DN+1



Open problems

• For  and 


- What’s the mechanism that lifts the pair of states? How many states are 
lifted?


- The perturbative correction to the -cohomology can be computed in 
the holomorphic twisted theory. [Budzik-Gaiotto-Klup-Williams-Wu-Yu’23]


- One can argue that the perturbative corrections truncate at finite loop 
orders. It would be very interesting to work out the explicit computation.

BN DN

Q

https://arxiv.org/abs/2306.01039


Protection in the chiral-ring sector?

• For  and , 


- There is no non-Cartan commuting -tuple. This implies that the chiral 
ring is in the Coulomb-branch cohomology. 


- The Coulomb branch has no quantum correction at the level of the two-
derivative action.


- Is the strong conjecture true for the chiral-ring sector?


• There are still many things to be understood!

AN CN
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