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Motivation

» The study of the supercharge J)-cohomology in supersymmetric field

theories dates back to Witten's seminal paper: Constraints on
supersymmetry breaking

« By Witten's argument, the Euler characteristic of the J)-cohomology,
namely the Witten index, is independent of couplings; however, how the

()-cohomology itself depends on the couplings remains an open question.


https://www.sciencedirect.com/science/article/pii/0550321382900712
https://www.sciencedirect.com/science/article/pii/0550321382900712

Motivation

* |t was conjectured that the spectrum of (J-cohomology classes in the

N = 4 super-Yang-Mills (SYM) is tree-level (classically) exact. [Kinney-
Maldacena-Minwalla-Raju’05, Grant-Grassi-Kim-Minwalla’08, ...]

* This non-renormalization conjecture opened a window for studying the
microstates of black holes in the gravity dual of the 4/ = 4 SYM at strong

't Hooft coupling via constructing and manipulating the J-cohomology

classes at weak coupling, and motivated a series of recent works. [CC-
Lin’22, Choi-Kim-Lee-Park’22, ... many others]



https://arxiv.org/abs/hep-th/0510251
https://arxiv.org/abs/hep-th/0510251
https://arxiv.org/abs/0803.4183
https://arxiv.org/abs/2209.06728
https://arxiv.org/abs/2209.06728
https://arxiv.org/abs/2209.12696
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BPS state/operators

» Consider the 4/ = 2 supersymmetry:

(Q.0") =H—Egps=A, 0°=0=0"
. The BPS states |P): H|W¥) =Ezps |P) © Q|P)=0=Q"|¥)

(BPS bound: E > Eppq)

e Standard Hodge theory argument;:
{19)|o19) =0}
{(1e)| 1wy = 01¥))

BPS states «— (J)-cohomology



Witten index

« The Witten index is the Euler characteristic of the J)-cohomology
I=Tr(=1)e”® = Trgps (= 1" = Tra-coho (=1
* Witten argued that:

1. I is independent of

2. | is independent of coupling constants in H, (as long as the Hilbert space
IS unchanged).

« How does the J-cohomology (BPS spectrum) depend on the couplings?



Quantum phase transition

* In CMT, one studies the space of Hamiltonians.

 Two points, 1 and 2, in this space belong to the same phase if there exists
a path from 1 to 2 such that the gap above the ground states does not
close, I.e., the Hilbert space of the ground states is preserved.

./——/‘I_I2 H,, H, Hamiltonians
U = Pe'lF®)4s g ocal unitary I1 Py, P, ground space

projectors

(In general, H, # UH, UT)




“Phases” of SUSY theories

* Let us consider the space of supercharges.

« Definition: (), and (), are in the same phase if 34 a path from 1 to 2, s.t.
the J)-cohomology is preserved, i.e., the BPS subspace is preserved.

—1
Q2 — MQIM 2
z -
M = Peli F$)ds 5 1gcal invertible 0, 2 projectors
. < T~
M might not preserve BPS \

subspace, P, # MP,M -1



Non-renormalization conjectures

Q‘_\ | g\-nms tou?\‘wl 3.
e lock ho
\\ am\lf()bcklﬂleg}’_Q
WQOI\F- . ) N
Cou\‘)\mg av\?/ PMS\Q -‘VMMQH'«W\ ?

 \Weak conjecture: There is no (codimension one) phase boundary. Phase
transition can only occur at discrete points, usually free points.

» Strong conjecture: The J)-cohomology is tree-level (classically) exact.

1 Otrees QtT } = Al_loop, so the BPS spectrum is 1-loop exact.

Iec



Example 1: /' = 2 SYK model

» /N =2 SYK model: complex fermions y; fori = 1,---, N [Fu-Gaiotto-Maldacena-Sachdev’16]

N
Q — Z Cl.lml.q]//ll...]//lq

ey =1

e The states are constant differential forms:

] & o | |
@) =— B . v, v o dr, (@isapfom
) ila“'»ip=1

« () actsasawedge product: a+— CAa (Cisag-form)


https://arxiv.org/abs/1610.08917

Example 1: /' = 2 SYK model

» The BPS spectrum ((O-cohomology) is invariant under generic deformation
of coupling Cil,,,l-q. Both the weak and strong conjectures are true in this

example.

* A side comment: The BPS spectrum exhibits a very interesting R-charge
concentration property — the BPS states in a cochain complex all have
the same R-charge.

s y Hm™e—1 s > H e s y Hmetl - > oo

* This property is closely related to the low-energy supersymmetric JT.
[Chang-Chen-Sia-Yang’24]



https://arxiv.org/abs/2412.06902

Example 2: Sigma model

» Consider a supersymmetric particle on a manifold .Z with coordinates x!
and superpartners . The states are differential forms:

N

1 o
|la) = F Z al.lmip(x)l/fh"l//l"Q)

iy, =1

. .0
. The supercharge Q = py' = dx‘? = d is the de Rham differential.
X

« (J-cohomology = de Rham cohomology



Adding superpotential

« Adding a superpotential /(x) to the system, the supercharge becomes

., . oh i —h h
Q = &“XJ"‘lE W =e Qe

. The J-cohomology is independent of deformations of /# and the metric 8ij

of the manifold, as long as the manifold is compact and smooth, and the
superpotential is finite.

 The weak conjecture is true.



Strong conjecture?

Consider perturbation theory around the free points (large mass limit), i.e.,
around each critical point 0h/odx' = 0

h = ml-jxixj + O(x°), E.V.(m;;) > 1.

For each critical point, there is one BPS state whose form-degree (fermion
number) equals the number of negative eigenvalues of m; (the Morse index).

These BPS states may receive instanton corrections and get lifted.

The strong conjecture is not true.



Expample 3: D1-D5 CFTs

 For CFTs, there are usually two choices of quantization.

1. On R4~ — 3 continuous spectrum. Usually, the ground is inside
the continuum. If the ground state is separated by a gap, then the
theory Is topological.

2. On S I x R — a discrete spectrum (for compact CFT). The states
correspond one-to-one to local operators on | d

. We would consider the S?~! x R case in which QJr = S (a conformal
supercharge).

e The space of Q is the superconformal manifold.



Expample 3: D1-D5 CFTs

In the superconformal manifold of the D1-D5 CFTs, there is a special point
that the theory is described by a symmetric orbifold

Sym¥(M,)  for M, =T* or K3
We study the conformal perturbation theory around this orbifold point.

For N = 2, up to the order we computed, the J-cohomology under the

first-order deformation exactly matches the known exact BPS partition
function.

This provides evidence for the strong conjecture in this case.



N =4 SYM



BPS operators in 4/ = 4 SYM

State/operator correspondence: O < | O)
N =4 SYM has 16 supercharges and 16 conformal supercharges

Pick one supercharge QO = Qf and one conformal supercharge S = QT

Supersymmetry algebra:
AEZ{Q,QT}:D—Jl—Jz_ql_Q2_Q3ZO, D : dilatation

1/16-BPS operators: Owith A =0 & 00 =0=0"0



BPS operators in 4/ = 4 SYM

« Consider /' = 4 SYM with U(N) gauge group.

o All operators are U(/V) invariant composites of fundamental fields with
covariant derivatives.

 Fundamental fields and derivatives (letters):

N X N matrix: oW1 P

lo °

_ B |
V.. Aﬂ, Dﬂ = 6ﬂ—zAﬂ

SU@d),: I=1,---4, SO(1,3): p=0,--3, SUR)XSUR): a,a==



BPS Letters

* BPS letters (A = 0):

a?

- Fields: gbi = d* , Y= — ilPH_ ) /10'[ = fE Fﬂy(gﬂy)++

- Derivatives: D, = (o"), ;D (i =1,2,3)

a

» BPS superfield (a generating function) with auxiliary variables (z*,z7, 0,,0,,60,): z*
commuting, 6; anti-commuting variables [Grant-Grassi-Kim-Minwalla’08, CC-Yin’13]

© (DY Zﬁﬂﬁ
Y(iz".27.6,,0,,0,) = — i -

0.

+ 200" + €700 + 40,0,0,f

. It satisfies W (z%, 0)) | 20=0.0=0


https://arxiv.org/abs/0803.4183
https://arxiv.org/abs/1305.6314

Superconformal manifold

» The superconformal manifold of the ./ = 4 SYM is parametrized by the
complexified coupling

0 471

T—_ ——

2r g%M

» The free point is at 7 = ico0, where any gauge invariant made out of ¥ is a
BPS operator, because QW = 0.

* For example:

Telyihy] Trl2,DiD>f1 = Til0y,0, 0, 1 THl0,. 0.0, 05 00,0, ¥1|
79=0,=



Tree-level cohomology

At the tree-level (classical), the OJ-action becomes
oY) = P°
and satisfies the Leibniz rule: Q(AB) = O(A)B + (- DYAQ(B).

* The tree-level cohomology differs from the free cohomology.

» For example, Tr (¢P,1¢P,, P, }) is Q-closed but Tt (¢, P, P,]) is not.



Cohomology classes at /V = o0

» Introduce formal variables: anticommuting dz” and commuting d0,
d¥ = dz* 0¥ + db, 0,V
Supercharge action: Qd¥ = [V, d¥]

. Single-trace cohomology classes: expanding Tr [(d‘I’)”]

a?lraé?%agiagzagj 1r [(aer\P)kl(az‘\y)kz(aéﬁqj)ml(692‘{’)’%2(66’3\11)’%3] 7%=0=0.

—

symmetrize

P, € Zso, q; k, = 0,1



Single-trace cohomology and Gravitons
 Atinfinite N, all the O-cohomology classes are given by the product
Tr [(dW¥)"]---Tr [(dWP)"x].

« Under the AdS/CFT correspondence, the single traces Tr [(dT)”] or the cyclic
cohomology classes are dual to single-graviton states in AdSs X S°.

* We verified this by matching the Beti numbers of the single-trace cohomology with
the number of single graviton states. [CC-Yin’13]

e The products Tr [(dW)"]---Tr [(dW)"] are dual to multi-graviton states.

1

. Since Gy ~ ) — (0, multi-gravitons are products of single-gravitons.


https://arxiv.org/abs/1305.6314

Cohomology at Finite /V

» The Hilbert space of operators at finite /NV can be realized as a quotient:

Hy=H
Z ., : space of multi-traces (N = oo Hilbert space)

Z y . finite N Hilbert space, Iy, : space of trace identities
(e.9. 2Tr X° = 3Tr X Tr X? — (Tr X)> for N = 2)

* A short exact sequence (SES):
0->Iy>H . 5 Hy—0

1 . inclusion map, x: quotient map that imposes the trace identities



Cohomology at Finite NV

 Since the maps & and 1 commutes with the supercharge (O, we have
i>1< T4
H"(Iy) - H'(# ) > H(# )

im (i) = ker ()

« Some of the cohomology classes (monotone classes) at finite NV are
given by imposing trace identities on the infinite /N cohomology classes

» Fortuitous classes are defined by the quotient H" (A )/1m 7. [CC-Lin'24)


https://arxiv.org/abs/2402.10129

Comments on the bulk duals

 Conjecture [CC-Lin'24]:

- Monotone classes < Microstates of horizonless geometries

- Fortuitous classes < Microstates of black holes

* Evidence/checks:

- (Generalized) LLM geometries <> monotone states in /' = 4 SYM [cc-
Lin'24]

- Superstrata geometries <> monotone states in D1-D5 CFTs [CC-Lin-Zhang’25]



https://arxiv.org/abs/2402.10129
https://arxiv.org/abs/2402.10129
https://arxiv.org/abs/2402.10129
https://arxiv.org/abs/2501.05448

BPS black holes

IB String Theory on AdSs X S° «— 4d SUN) 4 = 4 SYM

» Supersymmetric black holes in AdS5 X S° preserving two supercharges
|Gutowski-Reall’04, Chong-Cvetic-Lu-Pope’05, Kunduri-Lucietti-Reall’06]

«—— Minimally-supersymmetric (1/16 BPS) states in ./ = 4 SYM

* These black holes carry five angular momenta:

Rotations in AdS5: J, and J, . Rotations in S°: d1, ¢, and g,

. J.,q, ~ N and the entropy S ~ N*


https://arxiv.org/abs/hep-th/0401129
https://arxiv.org/abs/hep-th/0506029
https://arxiv.org/abs/hep-th/0601156

A very intuitive argument:

 Horizonless geometries have a “smooth”

Gy — 0 limit — They can be viewed as

coherent states of gravitons, and L/BPS-
disassemble into non-interacting gravitons as

Gy — 0.

[t is highly unlikely for a BPS horizonless
solution to become non-BPS as Gy — 0.

 Black hole geometries usually become

: : : , E Ll o o o o
singular when G, — 0 (without increasing BPS

their energy). For example, BPS BHs in AdSs. N.



Tests of the non-renormalization
conjectures



1/8-BPS Schur sector

The 1/8-BPS Schur sector can be defined by a (Q + §)-cohomology and is

described by a 2d super-chiral algebra. [Beem-Lemos-Liendo-Peelaers-Rastelli-van
Rees’13]

The (O + S)-cohomology is isomorphic to the J-cohomology with
constraints 693\11 = () and @Zz‘P = (). [CC-Lin-Wu’23]

Due to the rigidity of the chiral algebra. We can argue that the strong
conjecture Is true In this case.

Generalization: In //° = 2 SCFT, the (Q + §)-cohomology is tree-level
(classically) exact for exactly marginal couplings.


https://arxiv.org/abs/1312.5344
https://arxiv.org/abs/1312.5344
https://arxiv.org/abs/2310.20086

1 /8-BPS chiral ring sector

The chiral ring is generated by the ./ = 1 chiral superfields ®. and W , whose
bottom components are ¢; = 0y ¥ and 4, = 0,."Y.

The superpotential gives the chiral relations: [¢,, ¢j] = ¢, 1,] = [4,, /lﬁ] = 0.

The chiral ring sector is a subsector of the monotone sector given by products
of the single traces

Tr[(9,+9)1(0,-¥)(0y, ¥)"™ (9, ) "(9p, )"

Z“=O=6’l~

=

symmetrize

Does the chiral ring receive quantum corrections?



S-duality test

 The /' = 4 SYM theory enjoys the S-duality, which maps the theory with
gauge group G and complexified gauge coupling
v, 41

T=—+—

2T g9\
to the theory with gauge group “G (the Langlands dual of G) and
complexified gauge coupling —1/7.

e Since the dual pair admits weak coupling descriptions near two different
points on the space of couplings, the S-duality provides a powerful tool
for testing the non-renormalization conjecture.



S-duality test

» The dual pair with gauge groups SU(/NV) and PSU(/V) does not give any

non-trivial checks because the J)-cohomology depends only on the Lie
algebra of the gauge group.

» To perform nontrivial checks, we consider the gauge groups SO(2N + 1)
and USp(2N).



Matching on the Coulomb branch

* [ et us move on to a generic point on the Coulomb branch. The gauge
group is broken to its maximal torus U(1)".

 |In convenient basses, for the Cartan-valued superfield ¥ takes the block
off-diagonal forms:

0 ¥, 0

| ¥, 0
Yso=|-¥, 0 O0Of, Wys= 0 _w |
0 0 0 P



Matching on the Coulomb branch

» After removing the zero column and row in ¢, the matrices ¢ and
‘PUSP are related by a conjugation. Hence, the cohomologies must agree.

 The Coulomb-branch cohomology embeds into the monotone
cohomology.

* This is because the fortuitous conomology is identified with a subspace of

the cohomology of trace relations, and all trace relations vanish identically
on the Coulomb branch.



Search for non-Coulomb branch classes

 We focus on the simplest dual pair: SO(7) and USp(6).

» Focusing on the BMN sector (0,.¥ = 0), Gadde-Lee-Raj-Tomar found the

first fortuitous class in the SO('7) theory with charges

(159591, Gy, G3) = (%, %, %, %, %), which has no S-dual in the USp(6)

theory in the BMN sector.

* |f the strong conjecture is true, then there must exist a non-Coulomb branch
class with the same charges in the USp(6) theory outside the BMN sector.

 \We did an exhaustive search and did not find any such a class.


https://arxiv.org/abs/2506.13887

Violation of S-duality

* \We constructed the cohomology classes up to

L=3J,4+3J,+2qg, +2g, + 2g, = 18, and found that the SO(7)and
USp(6) cohomology classes agree, except

BMN
(Jlajz,thha%\‘(%v%»g’g»g) (0,0,3,3,3)
(ny,n_,ny,ng,n3,n) (0,0,3,3,3,8) (1,1,2,2,2,8)
gauge group SO(7) | USp(6) | SO(7) | USp(6)
all states 903 903 826 825
non-()-closed states 220 221 0 0
()-exact states 559 559 741 741
monotone classes 123 123 80 84
fortuitous classes 1 0 0 0

chiral ring



Conclusion

» The strong conjecture is false in the /' = 4 SYM, i.e., the O-cohomology
must recelive loops or non-perturbative corrections.

 The weak conjecture can still be correct, i.e., after taking into account the

perturbative and non-perturbative corrections near the free points, the
-cohomology is independent of the coupling.

* \ery surprisingly, the fortuitous class in the BMN sector should be paired
with a monotone class in the chiral ring sector.



Conclusion

Such a chiral ring element should vanish when going onto the Coulomb
branch, because the Coulomb-branch cohomology respects the S-duality.

Naively, this sounds like a contradiction. Since the chiral ring elements are
mutually commuting, they should reside in the Cartan subalgebra.

However, SO(7) admits a commuting triple not simultaneously conjugate
into the Cartan subalgebra. [Borel-Freedman-Morgan’1999]

In general, non-Cartan commuting /N-tuple exists in By, and Dy .



Open problems

« For By and Dy,

- What’s the mechanism that lifts the pair of states”? How many states are
lifted?

- The perturbative correction to the (J-cohomology can be computed in
the holomorphic twisted theory. [Budzik-Gaiotto-Klup-Williams-Wu-Yu’23]

- One can argue that the perturbative corrections truncate at finite loop
orders. It would be very interesting to work out the explicit computation.


https://arxiv.org/abs/2306.01039

Protection in the chiral-ring sector?

» For Ay and Cy,

- There is no non-Cartan commuting N-tuple. This implies that the chiral
ring is in the Coulomb-branch cohomology.

- The Coulomb branch has no quantum correction at the level of the two-
derivative action.

- Is the strong conjecture true for the chiral-ring sector?

* There are still many things to be understood!



Thank you



