

Southeast University

October 31, 2025

Introduction to \mathcal{Q} -cohomology and Fortuity

Chi-Ming Chang

Tsinghua University

2402.10129, 2510.24008 with Ying-Hsuan Lin

Motivation

- The study of the supercharge Q -cohomology in supersymmetric field theories dates back to Witten's seminal paper: [Constraints on supersymmetry breaking](#)
- By Witten's argument, the Euler characteristic of the Q -cohomology, namely the Witten index, is independent of couplings; however, how the Q -cohomology itself depends on the couplings remains an open question.

Motivation

- It was conjectured that the spectrum of Q -cohomology classes in the $\mathcal{N} = 4$ super-Yang-Mills (SYM) is tree-level (classically) exact. [[Kinney-Maldacena-Minwalla-Raju'05](#), [Grant-Grassi-Kim-Minwalla'08](#), ...]
- This non-renormalization conjecture opened a window for studying the microstates of black holes in the gravity dual of the $\mathcal{N} = 4$ SYM at strong 't Hooft coupling via constructing and manipulating the Q -cohomology classes at weak coupling, and motivated a series of recent works. [[CC-Lin'22](#), [Choi-Kim-Lee-Park'22](#), ... many others]

Outline

- Introduction
- Q -cohomology, conjectures, and examples
- Q -cohomology in $\mathcal{N} = 4$ SYM, and the holographic dual
- S-duality test
- Conclusion

\mathcal{Q} -cohomology, conjectures, and examples

BPS state/operators

- Consider the $\mathcal{N} = 2$ supersymmetry:

$$\{Q, Q^\dagger\} = H - E_{\text{BPS}} \equiv \Delta, \quad Q^2 = 0 = Q^{\dagger 2}$$

- The BPS states $|\Psi\rangle$: $H|\Psi\rangle = E_{\text{BPS}}|\Psi\rangle \Leftrightarrow Q|\Psi\rangle = 0 = Q^\dagger|\Psi\rangle$
(BPS bound: $E \geq E_{\text{BPS}}$)
- Standard Hodge theory argument:

$$\text{BPS states} \longleftrightarrow Q\text{-cohomology} \quad \frac{\{|\Psi\rangle \mid Q|\Psi\rangle = 0\}}{\{|\Psi\rangle \mid |\Psi\rangle = Q|\Psi'\}\}}$$

Witten index

- The Witten index is the Euler characteristic of the Q -cohomology

$$I = \text{Tr}(-1)^F e^{-\beta\Delta} = \text{Tr}_{\text{BPS}}(-1)^F = \text{Tr}_{Q\text{-coho}}(-1)^F$$

- Witten argued that:
 1. I is independent of β
 2. I is independent of coupling constants in H , (as long as the Hilbert space is unchanged).
- How does the Q -cohomology (BPS spectrum) depend on the couplings?

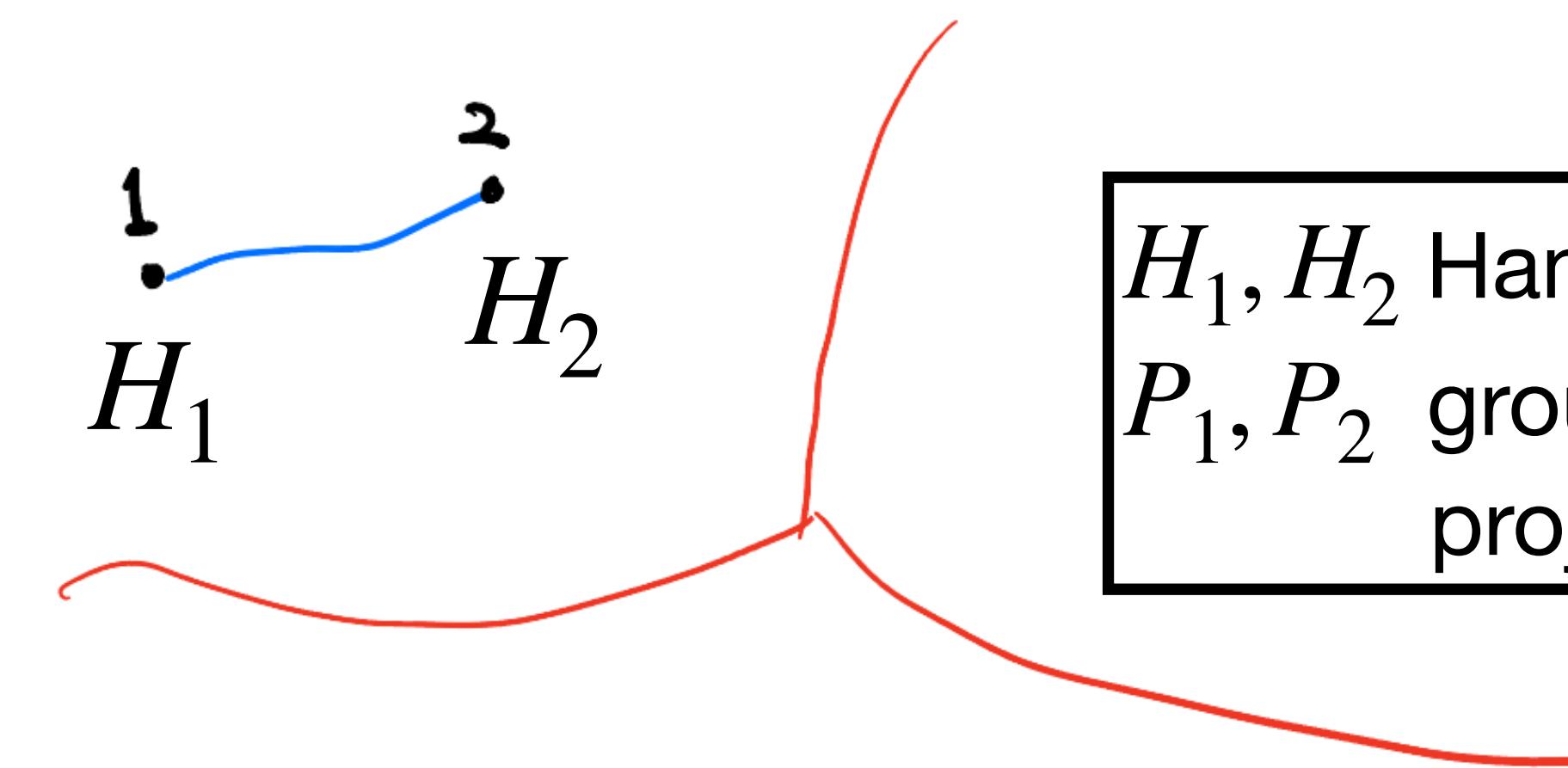
Quantum phase transition

- In CMT, one studies the space of Hamiltonians.
- Two points, 1 and 2, in this space belong to the same phase if there exists a path from 1 to 2 such that the gap above the ground states does not close, i.e., the Hilbert space of the ground states is preserved.

$$P_2 = UP_1U^\dagger$$

$U = Pe^{i \int F(s)ds}$ a local unitary

(In general, $H_2 \neq UH_1U^\dagger$)



H_1, H_2 Hamiltonians
 P_1, P_2 ground space projectors

“Phases” of SUSY theories

- Let us consider the space of supercharges.
- **Definition:** Q_1 and Q_2 are in the same phase if \exists a path from 1 to 2, s.t. the Q -cohomology is preserved, i.e., the BPS subspace is preserved.

$$Q_2 = MQ_1M^{-1}$$

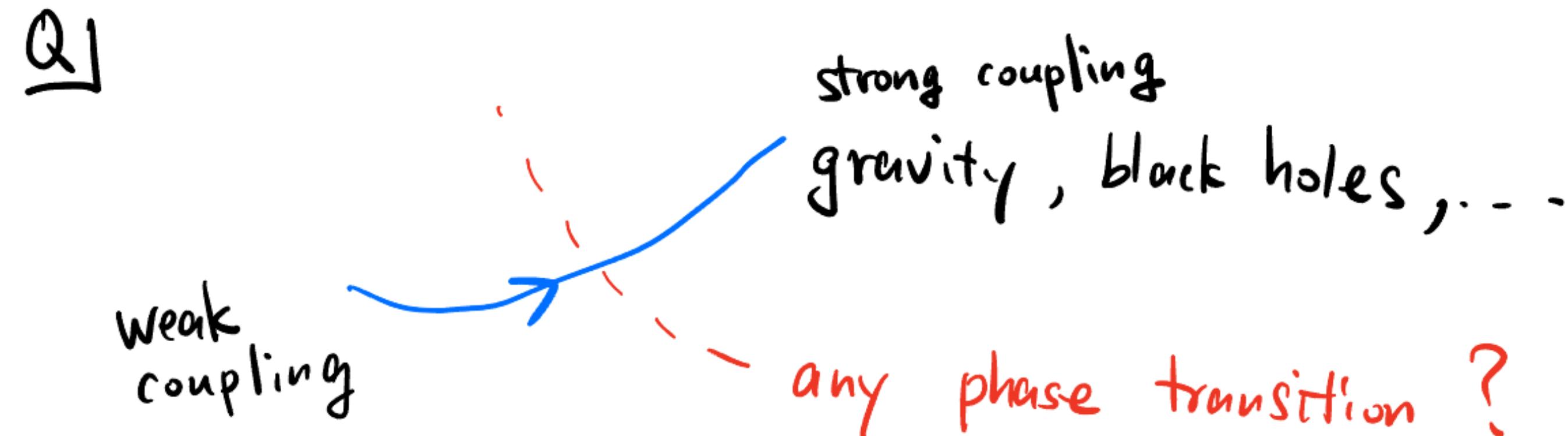
$M = Pe^{\int_1^2 F(s)ds}$ a local invertible

M might not preserve BPS subspace, $P_2 \neq MP_1M^{-1}$.



P_1, P_2 BPS subspace projectors

Non-renormalization conjectures



- Weak conjecture: There is no (codimension one) phase boundary. Phase transition can only occur at discrete points, usually free points.
- Strong conjecture: The Q -cohomology is tree-level (classically) exact.

$\{Q_{\text{tree}}, Q_{\text{tree}}^\dagger\} = \Delta_{\text{1-loop}}$, so the BPS spectrum is 1-loop exact.

Example 1: $\mathcal{N} = 2$ SYK model

- $\mathcal{N} = 2$ SYK model: complex fermions ψ_i for $i = 1, \dots, N$ [\[Fu-Gaiotto-Maldacena-Sachdev'16\]](#)

$$Q = \sum_{i_1, \dots, i_q=1}^N C_{i_1 \dots i_q} \psi^{i_1} \dots \psi^{i_q}$$

- The states are **constant** differential forms:

$$|\alpha\rangle = \frac{1}{p!} \sum_{i_1, \dots, i_p=1}^N \alpha_{i_1 \dots i_p} \psi^{i_1} \dots \psi^{i_p} |\Omega\rangle, \quad \psi^i \leftrightarrow dx^i, \quad (\alpha \text{ is a } p\text{-form})$$

- Q acts as a wedge product: $\alpha \mapsto C \wedge \alpha$ (C is a q -form)

Example 1: $\mathcal{N} = 2$ SYK model

- The BPS spectrum (Q -cohomology) is invariant under generic deformation of coupling $C_{i_1 \dots i_q}$. Both the weak and strong conjectures are true in this example.
- A side comment: The BPS spectrum exhibits a very interesting **R-charge concentration** property – the BPS states in a cochain complex all have the same R-charge.

$$\dots \xrightarrow{Q} H^{n_c-1} \xrightarrow{Q} \textcolor{red}{H^{n_c}} \xrightarrow{Q} H^{n_c+1} \xrightarrow{Q} \dots$$

- This property is closely related to the low-energy supersymmetric JT. [\[Chang-Chen-Sia-Yang'24\]](#)

Example 2: Sigma model

- Consider a supersymmetric particle on a manifold \mathcal{M} with coordinates x^i and superpartners ψ^i . The states are differential forms:

$$|\alpha\rangle = \frac{1}{p!} \sum_{i_1, \dots, i_p=1}^N \alpha_{i_1 \dots i_p}(x) \psi^{i_1} \dots \psi^{i_p} |\Omega\rangle$$

- The supercharge $Q = p_i \psi^i = dx^i \frac{\partial}{\partial x^i} = d$ is the de Rham differential.
- Q -cohomology = de Rham cohomology

Adding superpotential

- Adding a superpotential $h(x)$ to the system, the supercharge becomes

$$Q = \left(g_{ij} \dot{x}^j + i \frac{\partial h}{\partial x^i} \right) \psi^i = e^{-h} Q_{h=0} e^h$$

- The Q -cohomology is independent of deformations of h and the metric g_{ij} of the manifold, as long as the manifold is compact and smooth, and the superpotential is finite.
- The weak conjecture is true.

Strong conjecture?

- Consider perturbation theory around the free points (large mass limit), i.e., around each critical point $\partial h/\partial x^i = 0$

$$h = m_{ij}x^i x^j + O(x^3), \quad \text{E.V.}(m_{ij}) \gg 1.$$

- For each critical point, there is one BPS state whose form-degree (fermion number) equals the number of negative eigenvalues of m_{ij} (the Morse index).
- These BPS states may receive instanton corrections and get lifted.
- The strong conjecture is not true.

Example 3: D1-D5 CFTs

- For CFTs, there are usually two choices of quantization.
 1. On $\mathbb{R}^{1,d-1} \longrightarrow$ a continuous spectrum. Usually, the ground is inside the continuum. If the ground state is separated by a gap, then the theory is topological.
 2. On $S^{d-1} \times \mathbb{R} \longrightarrow$ a discrete spectrum (for compact CFT). The states correspond one-to-one to local operators on \mathbb{R}^d .
- We would consider the $S^{d-1} \times \mathbb{R}$ case in which $Q^\dagger = S$ (a conformal supercharge).
- The space of Q is the superconformal manifold.

Example 3: D1-D5 CFTs

- In the superconformal manifold of the D1-D5 CFTs, there is a special point that the theory is described by a symmetric orbifold

$$\text{Sym}^N(M_4) \quad \text{for } M_4 = T^4 \text{ or } K3$$

- We study the conformal perturbation theory around this orbifold point.
- For $N = 2$, up to the order we computed, the Q -cohomology under the first-order deformation exactly matches the known exact BPS partition function.
- This provides evidence for the strong conjecture in this case.

$\mathcal{N} = 4$ SYM

BPS operators in $\mathcal{N} = 4$ SYM

- State/operator correspondence: $O \leftrightarrow |O\rangle$
- $\mathcal{N} = 4$ SYM has 16 supercharges and 16 conformal supercharges
- Pick one supercharge $Q \equiv Q_-^4$ and one conformal supercharge $S = Q^\dagger$
- Supersymmetry algebra:
$$\Delta \equiv 2\{Q, Q^\dagger\} = D - J_1 - J_2 - q_1 - q_2 - q_3 \geq 0, \quad D: \text{dilatation}$$
- 1/16-BPS operators: O with $\Delta = 0 \Leftrightarrow QO = 0 = Q^\dagger O$

BPS operators in $\mathcal{N} = 4$ SYM

- Consider $\mathcal{N} = 4$ SYM with $U(N)$ gauge group.
- All operators are $U(N)$ invariant composites of fundamental fields with covariant derivatives.
- Fundamental fields and derivatives (letters):

$N \times N$ matrix: $\Phi^{[IJ]}$, $\Psi_{I\alpha}$, $\bar{\Psi}_{\dot{\alpha}}^I$, A_μ , $D_\mu = \partial_\mu - iA_\mu$

$SU(4)_R$: $I = 1, \dots, 4$, $SO(1,3)$: $\mu = 0, \dots, 3$, $SU(2) \times SU(2)$: $\alpha, \dot{\alpha} = \pm$

BPS Letters

- **BPS letters** ($\Delta = 0$):
 - Fields: $\phi^i \equiv \Phi^{4i}$, $\psi_i \equiv -i\Psi_{i+}$, $\lambda_{\dot{\alpha}} \equiv \bar{\Psi}_{\dot{\alpha}}^4$, $f \equiv F_{\mu\nu}(\sigma^{\mu\nu})_{++}$
 - Derivatives: $D_{\dot{\alpha}} \equiv (\sigma^\mu)_{+\dot{\alpha}} D_\mu$ $(i = 1, 2, 3)$
- **BPS superfield** (a generating function) with auxiliary variables $(z^+, z^-, \theta_1, \theta_2, \theta_3)$: z^\pm commuting, θ_i anti-commuting variables [\[Grant-Grassi-Kim-Minwalla'08, CC-Yin'13\]](#)

$$\Psi(z^+, z^-, \theta_1, \theta_2, \theta_3) = -i \sum_{n=0}^{\infty} \frac{(z^{\dot{\alpha}} D_{\dot{\alpha}})^n}{n!} \left[\frac{z^{\dot{\beta}} \lambda_{\dot{\beta}}}{n+1} + 2\theta_i \phi^i + \epsilon^{ijk} \theta_i \theta_j \psi_k + 4\theta_1 \theta_2 \theta_3 f \right]$$

- It satisfies $\Psi(z^\alpha, \theta_i) |_{z^\alpha=0, \theta_i=0} = 0$.

Superconformal manifold

- The superconformal manifold of the $\mathcal{N} = 4$ SYM is parametrized by the complexified coupling

$$\tau = \frac{\theta}{2\pi} + \frac{4\pi i}{g_{\text{YM}}^2}$$

- The free point is at $\tau = i\infty$, where any gauge invariant made out of Ψ is a BPS operator, because $Q\Psi = 0$.
- For example:

$$\text{Tr}[\psi_1 \phi_1] \text{Tr}[\lambda_+ D_1 D_2 f] = \text{Tr}[\partial_{\theta_2} \partial_{\theta_3} \Psi \partial_{\theta_1} \Psi] \text{Tr}[\partial_{z^+} \Psi \partial_{z^+} \partial_{z^-} \partial_{\theta_1} \partial_{\theta_2} \partial_{\theta_3} \Psi] \Big|_{z^a = \theta_i = 0}$$

Tree-level cohomology

- At the tree-level (classical), the Q -action becomes

$$Q(\Psi) = \Psi^2$$

and satisfies the Leibniz rule: $Q(AB) = Q(A)B + (-1)^{|A|}AQ(B)$.

- The tree-level cohomology differs from the free cohomology.
- For example, $\text{Tr}(\phi_1\phi_2\{\phi_1, \phi_2\})$ is Q -closed but $\text{Tr}(\phi_1\phi_2[\phi_1, \phi_2])$ is not.

Cohomology classes at $N = \infty$

- Introduce formal variables: anticommuting dz^α and commuting $d\theta_i$

$$d\Psi \equiv dz^{\dot{\alpha}} \partial_{z^{\dot{\alpha}}} \Psi + d\theta_i \partial_{\theta_i} \Psi$$

Supercharge action: $Qd\Psi = [\Psi, d\Psi]$

- Single-trace cohomology classes: expanding $\text{Tr} [(d\Psi)^n]$

$$\partial_{z^+}^{p_1} \partial_{z^-}^{p_2} \partial_{\theta_1}^{q_1} \partial_{\theta_2}^{q_2} \partial_{\theta_3}^{q_3} \underbrace{\text{Tr} [(\partial_{z^+} \Psi)^{k_1} (\partial_{z^-} \Psi)^{k_2} (\partial_{\theta_1} \Psi)^{m_1} (\partial_{\theta_2} \Psi)^{m_2} (\partial_{\theta_3} \Psi)^{m_3}]}_{\text{symmetrize}} \Big|_{z^\alpha=0=\theta_i}$$

$$p_\alpha, m_i \in \mathbb{Z}_{\geq 0}, \quad q_i, k_\alpha = 0, 1$$

Single-trace cohomology and Gravitons

- At infinite N , all the Q -cohomology classes are given by the product $\text{Tr} [(d\Psi)^{n_1}] \dots \text{Tr} [(d\Psi)^{n_K}]$.
- Under the AdS/CFT correspondence, the single traces $\text{Tr} [(d\Psi)^n]$ or the cyclic cohomology classes are dual to single-graviton states in $\text{AdS}_5 \times \text{S}^5$.
- We verified this by matching the Betti numbers of the single-trace cohomology with the number of single graviton states. [\[CC-Yin'13\]](#)
- The products $\text{Tr} [(d\Psi)^{n_1}] \dots \text{Tr} [(d\Psi)^{n_L}]$ are dual to multi-graviton states.
- Since $G_N \sim \frac{1}{N^2} \rightarrow 0$, multi-gravitons are products of single-gravitons.

Cohomology at Finite N

- The Hilbert space of operators at finite N can be realized as a quotient:

$$\mathcal{H}_N \cong \mathcal{H}_\infty / I_N$$

\mathcal{H}_∞ : space of multi-traces ($N = \infty$ Hilbert space)

\mathcal{H}_N : finite N Hilbert space, I_N : space of trace identities

(e.g. $2\text{Tr } X^3 = 3\text{Tr } X \text{Tr } X^2 - (\text{Tr } X)^3$ for $N = 2$)

- A short exact sequence (SES):

$$0 \rightarrow I_N \xrightarrow{i} \mathcal{H}_\infty \xrightarrow{\pi} \mathcal{H}_N \rightarrow 0$$

i : inclusion map, π : quotient map that imposes the trace identities

Cohomology at Finite N

- Since the maps π and i commutes with the supercharge Q , we have

$$H^n(I_N) \xrightarrow{i_*} H^n(\mathcal{H}_\infty) \xrightarrow{\pi_*} H^n(\mathcal{H}_N)$$
$$\text{im } (i_*) = \ker (\pi_*)$$

- Some of the cohomology classes (**monotone classes**) at finite N are given by imposing trace identities on the infinite N cohomology classes

$$H^n(\mathcal{H}_\infty)/\text{im } i_* \cong \text{im } \pi_* \subset H^n(\mathcal{H}_N)$$

- **Fortuitous classes** are defined by the quotient $H^n(\mathcal{H}_N)/\text{im } \pi_*$ [\[CC-Lin'24\]](#)

Comments on the bulk duals

- **Conjecture** [\[CC-Lin'24\]](#):
 - **Monotone classes** \leftrightarrow **Microstates of horizonless geometries**
 - **Fortuitous classes** \leftrightarrow **Microstates of black holes**
- **Evidence/checks:**
 - (Generalized) LLM geometries \leftrightarrow monotone states in $\mathcal{N} = 4$ SYM [\[CC-Lin'24\]](#)
 - Superstrata geometries \leftrightarrow monotone states in D1-D5 CFTs [\[CC-Lin-Zhang'25\]](#)

BPS black holes

IIB String Theory on $\text{AdS}_5 \times \text{S}^5 \longleftrightarrow$ 4d $\text{SU}(N)$ $\mathcal{N} = 4$ SYM

- Supersymmetric black holes in $\text{AdS}_5 \times \text{S}^5$ preserving two supercharges
[\[Gutowski-Reall'04\]](#), [\[Chong-Cvetic-Lu-Pope'05\]](#), [\[Kunduri-Lucietti-Reall'06\]](#)

\longleftrightarrow **Minimally-supersymmetric (1/16 BPS) states in $\mathcal{N} = 4$ SYM**

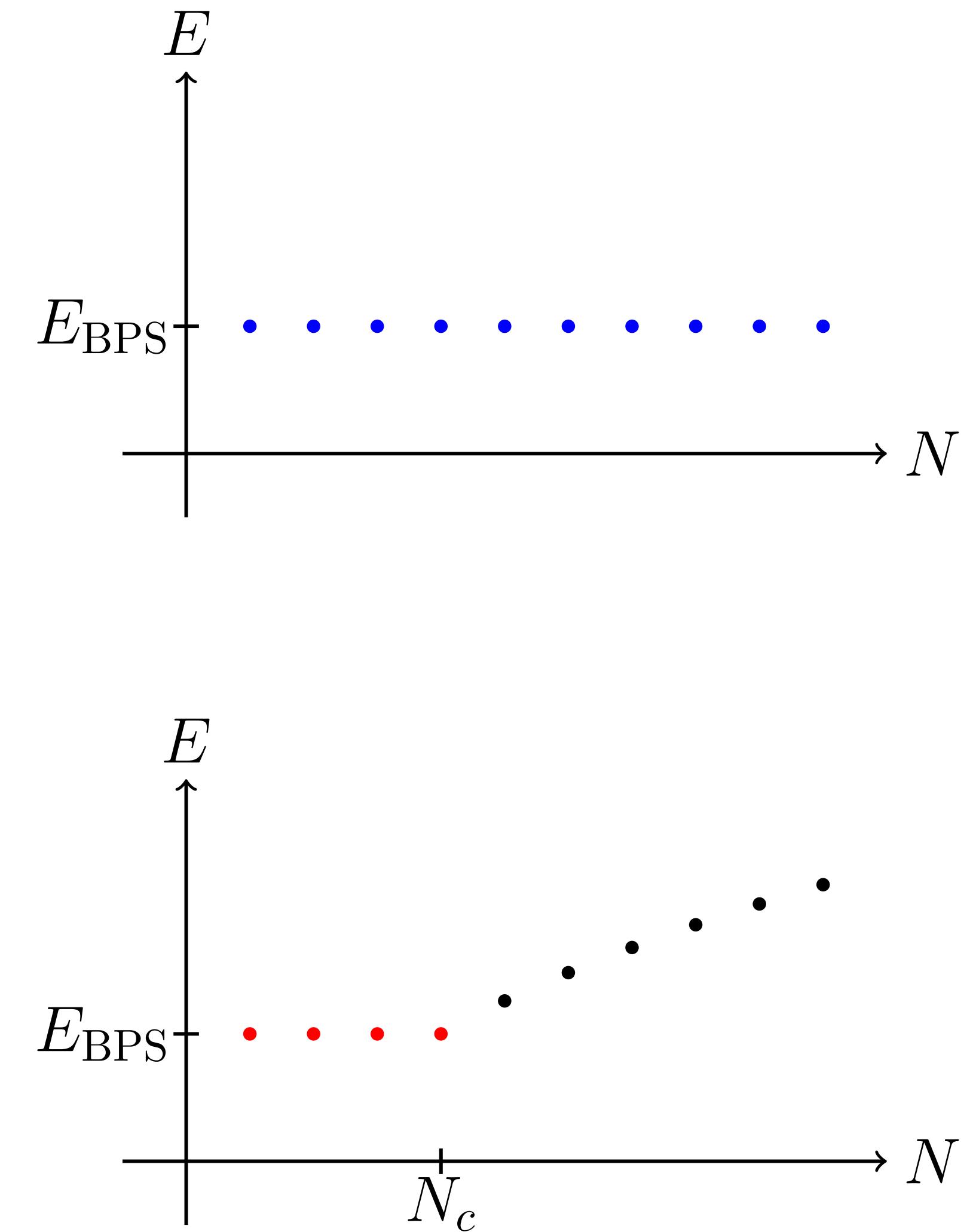
- These black holes carry five angular momenta:

Rotations in AdS_5 : J_1 and J_2 . Rotations in S^5 : q_1 , q_2 , and q_3

- $J_i, q_a \sim N^2$ and the entropy $S \sim N^2$

A very intuitive argument:

- Horizonless geometries have a “smooth” $G_N \rightarrow 0$ limit – They can be viewed as coherent states of gravitons, and disassemble into non-interacting gravitons as $G_N \rightarrow 0$.
- It is highly unlikely for a BPS horizonless solution to become non-BPS as $G_N \rightarrow 0$.
- Black hole geometries usually become singular when $G_N \rightarrow 0$ (without increasing their energy). For example, BPS BHs in AdS_5 .



Tests of the non-renormalization conjectures

1/8-BPS Schur sector

- The 1/8-BPS Schur sector can be defined by a $(Q + S)$ -cohomology and is described by a 2d super-chiral algebra. [\[Beem-Lemos-Liendo-Pelaers-Rastelli-van Rees'13\]](#)
- The $(Q + S)$ -cohomology is isomorphic to the Q -cohomology with constraints $\partial_{\theta_3} \Psi = 0$ and $\partial_{z_2} \Psi = 0$. [\[CC-Lin-Wu'23\]](#)
- Due to the rigidity of the chiral algebra. We can argue that the strong conjecture is true in this case.
- Generalization: In $\mathcal{N} = 2$ SCFT, the $(Q + S)$ -cohomology is tree-level (classically) exact for exactly marginal couplings.

1/8-BPS chiral ring sector

- The chiral ring is generated by the $\mathcal{N} = 1$ chiral superfields Φ_i and W_α , whose bottom components are $\phi_i = \partial_{\theta_i} \Psi$ and $\lambda_\alpha = \partial_{z^\alpha} \Psi$.
- The superpotential gives the chiral relations: $[\phi_i, \phi_j] = [\phi_i, \lambda_\alpha] = [\lambda_\alpha, \lambda_\beta] = 0$.
- The chiral ring sector is a subsector of the monotone sector given by products of the single traces

$$\underbrace{\text{Tr} [(\partial_{z^+} \Psi)^{k_1} (\partial_{z^-} \Psi)^{k_2} (\partial_{\theta_1} \Psi)^{m_1} (\partial_{\theta_2} \Psi)^{m_2} (\partial_{\theta_3} \Psi)^{m_3}]}_{\text{symmetrize}} \Big|_{z^\alpha = 0 = \theta_i}$$

- Does the chiral ring receive quantum corrections?

S-duality test

- The $\mathcal{N} = 4$ SYM theory enjoys the S-duality, which maps the theory with gauge group G and complexified gauge coupling

$$\tau = \frac{\theta}{2\pi} + \frac{4\pi i}{g_{\text{YM}}^2}$$

to the theory with gauge group ${}^L G$ (the Langlands dual of G) and complexified gauge coupling $-1/\tau$.

- Since the dual pair admits weak coupling descriptions near two different points on the space of couplings, the S-duality provides a powerful tool for testing the non-renormalization conjecture.

S-duality test

- The dual pair with gauge groups $SU(N)$ and $PSU(N)$ does not give any non-trivial checks because the Q -cohomology depends only on the Lie algebra of the gauge group.
- To perform nontrivial checks, we consider the gauge groups $SO(2N + 1)$ and $USp(2N)$.

Matching on the Coulomb branch

- Let us move on to a generic point on the Coulomb branch. The gauge group is broken to its maximal torus $U(1)^N$.
- In convenient bases, for the Cartan-valued superfield Ψ takes the block off-diagonal forms:

$$\Psi_{SO} = \begin{pmatrix} 0 & i\Psi_D & 0 \\ -i\Psi_D & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Psi_{USp} = \begin{pmatrix} \Psi_D & 0 \\ 0 & -\Psi_D \end{pmatrix}.$$

Matching on the Coulomb branch

- After removing the zero column and row in Ψ_{SO} , the matrices Ψ_{SO} and Ψ_{USp} are related by a conjugation. Hence, the cohomologies must agree.
- The Coulomb-branch cohomology embeds into the monotone cohomology.
- This is because the fortuitous cohomology is identified with a subspace of the cohomology of trace relations, and all trace relations vanish identically on the Coulomb branch.

Search for non-Coulomb branch classes

- We focus on the simplest dual pair: $\text{SO}(7)$ and $\text{USp}(6)$.
- Focusing on the BMN sector ($\partial_{z^\alpha} \Psi = 0$), [Gadde-Lee-Raj-Tomar](#) found the first fortuitous class in the $\text{SO}(7)$ theory with charges $(J_1, J_2, q_1, q_2, q_3) = (\frac{1}{2}, \frac{1}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5}{2})$, which has no S-dual in the $\text{USp}(6)$ theory in the BMN sector.
- If the strong conjecture is true, then there must exist a non-Coulomb branch class with the same charges in the $\text{USp}(6)$ theory outside the BMN sector.
- We did an exhaustive search and did not find any such a class.

Violation of S-duality

- We constructed the cohomology classes up to $L = 3J_1 + 3J_2 + 2q_1 + 2q_2 + 2q_3 = 18$, and found that the $SO(7)$ and $USp(6)$ cohomology classes agree, except

BMN chiral ring

$(J_1, J_2, q_1, q_2, q_3)$	$(\frac{1}{2}, \frac{1}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5}{2})$	$(0,0,3,3,3)$	
$(n_+, n_-, n_1, n_2, n_3, n)$	$(0,0,3,3,3,8)$	$(1,1,2,2,2,8)$	
gauge group	$SO(7)$	$USp(6)$	$SO(7)$
all states	903	903	826
non- Q -closed states	220	221	0
Q -exact states	559	559	741
monotone classes	123	123	85
fortuitous classes	1	0	0

Conclusion

- The strong conjecture is false in the $\mathcal{N} = 4$ SYM, i.e., the Q -cohomology must receive loops or non-perturbative corrections.
- The weak conjecture can still be correct, i.e., after taking into account the perturbative and non-perturbative corrections near the free points, the Q -cohomology is independent of the coupling.
- Very surprisingly, the fortuitous class in the BMN sector should be paired with a monotone class in the chiral ring sector.

Conclusion

- Such a chiral ring element should vanish when going onto the Coulomb branch, because the Coulomb-branch cohomology respects the S-duality.
- Naively, this sounds like a contradiction. Since the chiral ring elements are mutually commuting, they should reside in the Cartan subalgebra.
- However, $SO(7)$ admits a commuting triple not simultaneously conjugate into the Cartan subalgebra. [\[Borel-Freedman-Morgan'1999\]](#)
- In general, non-Cartan commuting N -tuple exists in B_N and D_{N+1} .

Open problems

- For B_N and D_N
 - What's the mechanism that lifts the pair of states? How many states are lifted?
 - The perturbative correction to the Q -cohomology can be computed in the holomorphic twisted theory. [\[Budzik-Gaiotto-Klup-Williams-Wu-Yu'23\]](#)
 - One can argue that the perturbative corrections truncate at finite loop orders. It would be very interesting to work out the explicit computation.

Protection in the chiral-ring sector?

- For A_N and C_N ,
 - There is no non-Cartan commuting N -tuple. This implies that the chiral ring is in the Coulomb-branch cohomology.
 - The Coulomb branch has no quantum correction at the level of the two-derivative action.
 - Is the strong conjecture true for the chiral-ring sector?
- There are still many things to be understood!

Thank you