

Bootstrapping Thermal CFTs

Elli Pomoni

Shing-Tung Yau Center

5 December 2025

Funded by
the European Union

European Research Council
Established by the European Commission

Alessio Miscioscia

Deniz Bozkurt

Enrico Marchetto

Julien Barrat

[\[2306.12417 & 2312.13030 Marchetto, Miscioscia, EP\]](#)

[\[2407.14600 Barrat, Fiol, Marchetto, Miscioscia, EP\]](#)

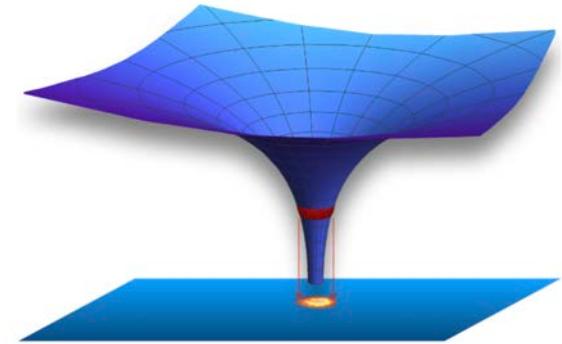
[\[2411.00978 Barrat, Marchetto, Miscioscia, EP\]](#)

[\[2506.06422 Barrat, Bozkurt, Marchetto, Miscioscia, EP\]](#)

[\[2510.20894 Barrat, Bozkurt, Marchetto, Miscioscia, EP\]](#)

Motivation

- * Quantum critical points: nonzero temperature in the lab.
- * Black Holes through AdS/CFT.
- * CFTs on non-trivial manifolds.



Thermal CFTs

Thermal effects are captured by placing the theory on a **circle**

$$S^1_\beta \times \mathbb{R}^{d-1}$$

$$\beta = \frac{1}{T}$$

With periodic boundary conditions for the bosons and anti-periodic for the fermions.

Broken symmetries are not lost but captured by broken Ward Identities.

Translations	✓
Spatial rotations	✓
Boosts	✗
Dilatations	✗
Special conformal	✗

Thermal CFTs

Assume we know the **zero temperature CFT data**:

$$\Delta, f_{123}$$

and are interested in computing **new finite temperature data**:
the non-zero ***thermal one-point functions***:

$$\langle \mathcal{O}(x) \rangle_\beta = \frac{b_{\mathcal{O}}}{\beta^{\Delta_{\mathcal{O}}}}$$

for neutral scalar operators.

And more generally for all traceless symmetric tensors:

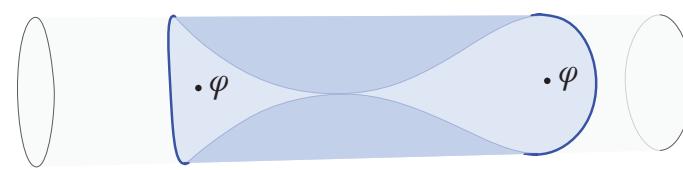
$$\langle \mathcal{O}^{\mu_1 \dots \mu_J}(x) \rangle_\beta = \frac{b_{\mathcal{O}_J}}{\beta^{\Delta_{\mathcal{O}_J}}} (e^{\mu_1} \dots e^{\mu_J} - \text{traces})$$

Thermal CFTs

We can still use the OPE:

$$\mathcal{O}_1(x) \times \mathcal{O}_2(0) = \sum_{\mathcal{O}} f_{12\mathcal{O}} |x|^{\Delta_{\mathcal{O}} - \Delta_1 - \Delta_2 - J} x_{\mu_1} \dots x_{\mu_J} \mathcal{O}^{\mu_1 \dots \mu_J}(0)$$

But now the radius of convergence is finite: $|x| < \beta$



$$|x| = \sqrt{x^2 + \tau^2}$$

$$x^2 = ||\vec{x}||^2$$

[Iliesiu, Koloğlu, Mahajan, Perlmutter, Simmons-Duffin 2018]

Thermal 2pt functions

The **two-point function** of identical scalars ϕ , using the OPE

$$\langle \phi(\tau, r) \phi(0) \rangle_\beta = \sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}} |x|^{\Delta_{\mathcal{O}} - 2\Delta_\phi - J} x_{\mu_1} \dots x_{\mu_J} \underline{\langle \mathcal{O}^{\mu_1 \dots \mu_J} \rangle_\beta}$$

$$\langle \mathcal{O}^{\mu_1 \dots \mu_J}(x) \rangle_\beta = \frac{b_{\mathcal{O}_J}}{\beta^{\Delta_{\mathcal{O}_J}}} (e^{\mu_1} \dots e^{\mu_J} - tr)$$

and the definition of the Gegenbauer polynomials:

$$\langle \phi(\tau, r) \phi(0) \rangle_\beta = \sum_{\mathcal{O}} \frac{a_{\mathcal{O}}}{\beta^{\Delta_{\mathcal{O}}}} |x|^{\Delta_{\mathcal{O}} - 2\Delta_\phi} C_J^{(\nu)} \left(\frac{\tau}{|x|} \right)$$

$$\underline{a_{\mathcal{O}}} = b_{\mathcal{O}} f_{\mathcal{O}\phi\phi} \frac{J!}{2^J (\nu)_J} \quad (\nu)_J = \frac{\Gamma(\nu + J)}{\Gamma(\nu)} \quad \nu = \frac{d-2}{2} \quad |x| = \sqrt{x^2 + \tau^2}$$

New Finite Temperature data

Thermal crossing

Periodicity of the two-point function is captured by the [\[Kubo 1957\]](#)

KMS condition: [\[Martin, Schwinger 1959\]](#)

$$\langle \phi(\tau, x) \phi(0,0) \rangle_\beta = \langle \phi(\tau + \beta, x) \phi(0,0) \rangle_\beta$$

The OPE expression does not manifestly satisfy KMS, thus imposing it gives a novel nontrivial **consistency condition**.

Variation of KMS:

$$\left\langle \phi \left(\beta/2 + \tau \right) \phi(0) \right\rangle_\beta = \left\langle \phi \left(\beta/2 - \tau \right) \phi(0) \right\rangle_\beta \quad \text{[El-Showk, Papadodimas 2011]}$$

Plan of the talk

- * **Sum rules from KMS** and lesson for light operators
- * Heavy operators: **asymptotic OPE density**
- * A **Numerical** approach: Light + Heavy
- * An **Analytical** approach: Dispersion Relation
- * Application to **Holographic CFTs**

Sum Rules

[2312.13030 Marchetto, Miscioscia, EP]

Sum rules from KMS

* OPE expand both sides of the [El-Showk - Papadodimas](#) formula

$$\left\langle \phi(\beta/2 + \tau, x) \phi(0) \right\rangle_\beta = \left\langle \phi(\beta/2 - \tau, x) \phi(0) \right\rangle_\beta$$

* Then further expand the result in powers of τ and x .

* Use the definition of Gegenbauer polynomials and the binomial theorem.

$$\sum_{\mathcal{O} \in \phi \times \phi} b_{\mathcal{O}} f_{\mathcal{O} \phi \phi} F_{\ell, n}(h, J) = 0 \quad \ell \in 2\mathbb{N} + 1, n \in \mathbb{N}$$
$$h = \Delta - J$$

$$F_{\ell, n}(h, J) = \frac{1}{2^{h+J}} \binom{\frac{h-2\Delta_\phi}{2}}{n} \binom{h+J-2\Delta_\phi-2n}{\ell} {}_3F_2 \left[\begin{matrix} \frac{1-J}{2}, -\frac{J}{2}, \frac{h}{2} - \Delta_\phi + 1 \\ \frac{h}{2} - \Delta_\phi - n + 1, -J - \nu + 1 \end{matrix} \middle| 1 \right]$$

Sum rules from KMS

$$\sum_{\mathcal{O} \in \phi \times \phi} \underline{b_{\mathcal{O}}} \underline{f_{\mathcal{O}\phi\phi}} \underline{F_{\ell,n}(h,J)} = 0 \quad \ell \in 2\mathbb{N} + 1, n \in \mathbb{N}$$

$h = \Delta - J$

$\mathcal{O} \in \phi \times \phi$	<small>New</small>	<small>Known data</small>
<small>Finite</small>	<small>Zero Temperature</small>	
<small>Temperature</small>		

We have an **infinite set** of **linear equations** for the combinations $a_{\mathcal{O}} \propto b_{\mathcal{O}} f_{\mathcal{O}\phi\phi}$

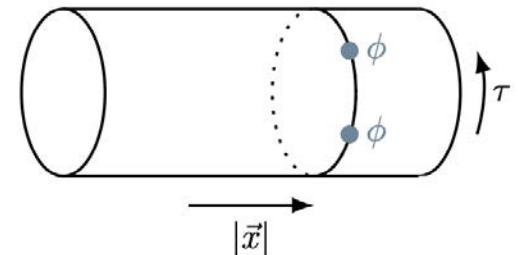
Difficulty: Thermal one-point functions *not* sign-definite.

Which is crucial for linear programming methods (standard numerical bootstrap).

Sum rules from KMS

The sum rules for $a_{\mathcal{O}} \propto b_{\mathcal{O}} f_{\mathcal{O}\phi\phi}$

further **simplified for $x = 0$**



$$\frac{\Gamma(2\Delta_\phi + \ell)}{\Gamma(2\Delta_\phi)} = \sum_{\Delta \neq 0} \frac{a_\Delta}{2^\Delta} \frac{\Gamma(\Delta - 2\Delta_\phi + 1)}{\Gamma(\Delta - 2\Delta_\phi - \ell + 1)}$$

$$\ell \in 2\mathbb{N} + 1$$

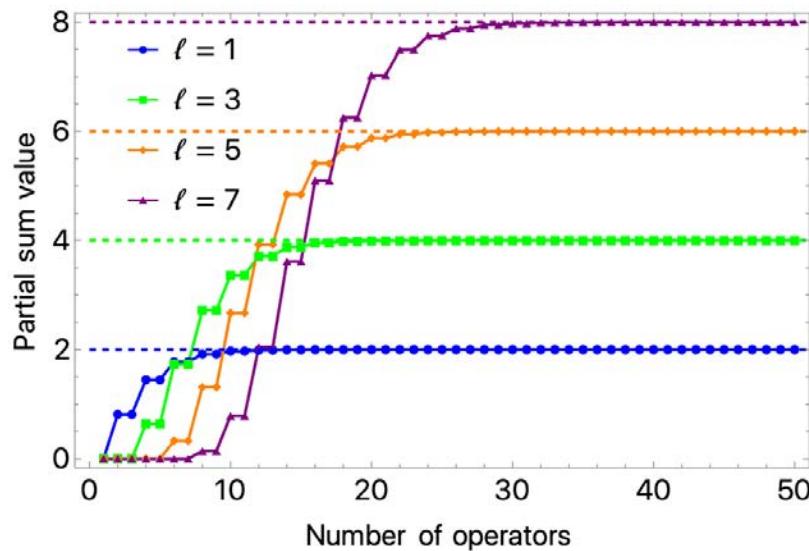
$$a_\Delta = \sum_{\mathcal{O} \in \phi \times \phi} a_{\mathcal{O}} C_J^{(\nu)}(1) \text{ for fixed } \Delta$$

Operators of same Δ but different J cannot be distinguished because of $x = 0$.

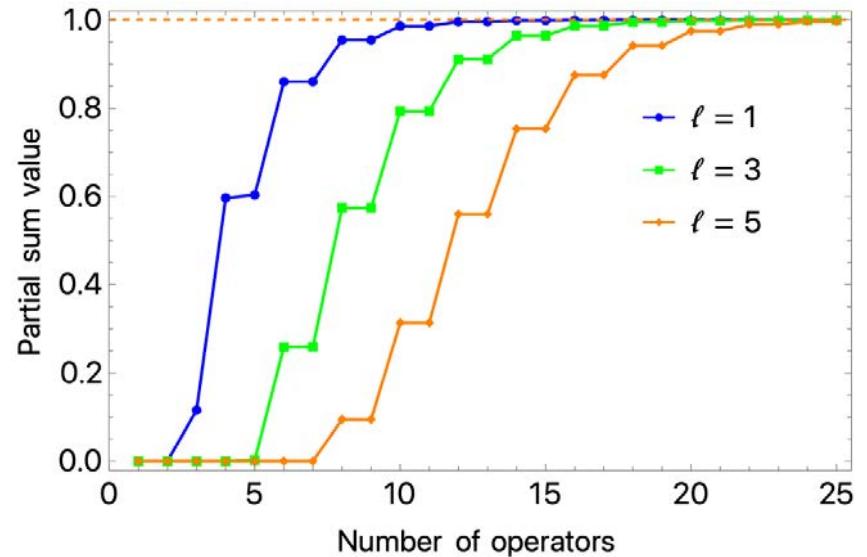
Generically this does not occur, unless there is extra symmetry, like for free theory.

KMS sum rules: test & learn

4-dim free theory



$O(N)$ model at large N



Dashed straight lines: the LHS of the sum rule (identity contribution). The RHS plot adding operators.

$$\frac{\Gamma(2\Delta_\phi + \ell)}{\Gamma(2\Delta_\phi)} = \sum_{\Delta \neq 0} \frac{a_\Delta}{2^\Delta} \frac{\Gamma(\Delta - 2\Delta_\phi + 1)}{\Gamma(\Delta - 2\Delta_\phi - \ell + 1)}$$

Observation: for **small ℓ** only **few light operators** contribute.

Heavy Operators

[2312.13030 Marchetto, Miscioscia, EP]

Asymptotic thermal OPE density

Consider the simplified two-point function at $x = 0$:

$$\langle \phi(\tau)\phi(0) \rangle_\beta = \tau^{-2\Delta_\phi} \sum_{\mathcal{O} \in \phi \times \phi} a_{\mathcal{O}} \frac{\tau^{\Delta_{\mathcal{O}}}}{\beta^{\Delta_{\mathcal{O}}}} = \tau^{-2\Delta_\phi} \int_0^\infty d\Delta \rho(\Delta) \frac{\tau^\Delta}{\beta^\Delta}$$

via introducing the spectral density $\rho(\Delta) = \sum_{\Delta'} \delta(\Delta' - \Delta) a_{\Delta'}$

Asymptotic thermal OPE density

Using Tauberian theorems or Laplace transform the contribution of the identity:

$$\rho(\Delta) \xrightarrow{\Delta \rightarrow \infty} \frac{1}{\Gamma(2\Delta_\phi)} \Delta^{2\Delta_\phi - 1}$$

Keep in mind, the physical spectrum is discrete $\rho(\Delta) \xrightarrow{\Delta \rightarrow \infty} \sum_{\Delta'} \delta(\Delta' - \Delta) a_\Delta$

More correctly: **average density** of OPE of Heavy operators

$$\int_0^\Delta \rho(\tilde{\Delta}) d\tilde{\Delta} \xrightarrow{\Delta \rightarrow \infty} \frac{\Delta^{2\Delta_\phi}}{\Gamma(2\Delta_\phi + 1)} \left(1 + \mathcal{O}\left(\frac{1}{\Delta}\right) \right)$$

Ex. 3d O(N) at large N

$$\langle \phi_i(\tau, x) \phi_j(0, 0) \rangle_\beta = \delta_{ij} \sum_{m=-\infty}^{\infty} \int \frac{d^2 k}{(2\pi)^2} \frac{e^{-i\vec{k}\cdot\vec{x} - i\omega_m \tau}}{\omega_m^2 + \vec{k}^2 + m_{th}^2} = \delta_{ij} \sum_{m=-\infty}^{\infty} \frac{e^{-m_{th}\sqrt{(\tau + m\beta)^2 + x^2}}}{\sqrt{(\tau + m\beta)^2 + x^2}}$$

[Sachdev, Ye 1992]

$$\Delta_{\phi_i} = \frac{1}{2} + \mathcal{O}\left(\frac{1}{N}\right)$$

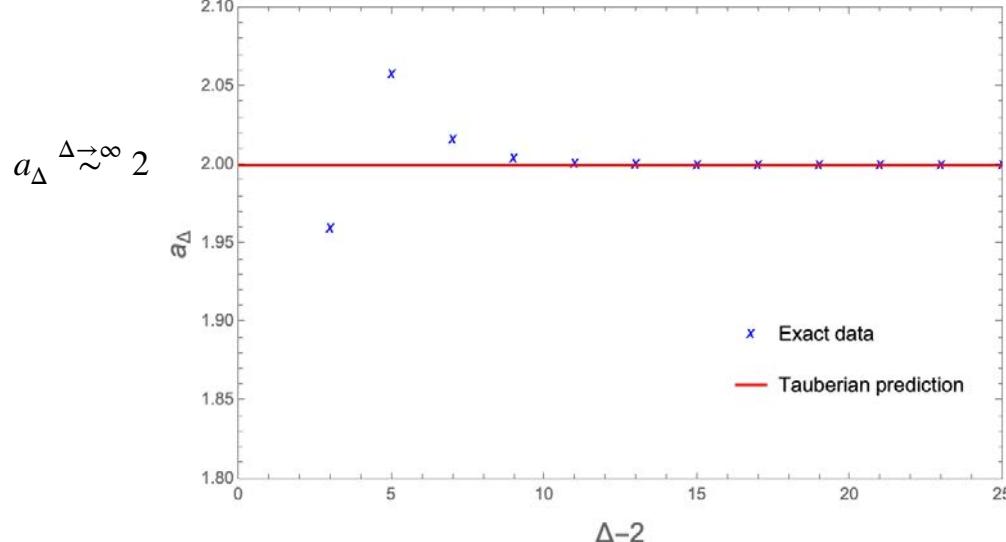
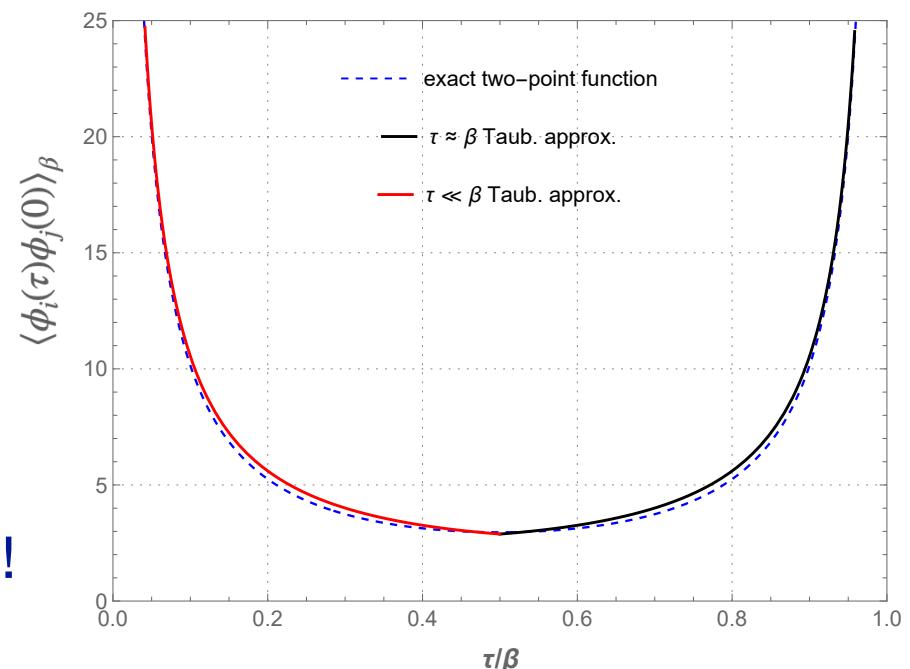
$$a_\Delta \xrightarrow{\Delta \rightarrow \infty} \frac{\Delta^{2\Delta_\phi - 1}}{\Gamma(2\Delta_\phi)} \delta \Delta$$

$$\Delta_\sigma = 2 + \mathcal{O}\left(\frac{1}{N}\right)$$

$$\langle \phi(\tau) \phi(0) \rangle_\beta \simeq \begin{cases} \int_0^\infty d\Delta \frac{\Delta^{2\Delta_\phi - 1}}{\Gamma(2\Delta_\phi)} \frac{(\beta - \tau)^{\Delta - 2\Delta_\phi}}{\beta^\Delta} & \tau/\beta \ll 1 \\ \int_0^\infty d\Delta \frac{\Delta^{2\Delta_\phi - 1}}{\Gamma(2\Delta_\phi)} \frac{\tau^{\Delta - 2\Delta_\phi}}{\beta^\Delta} & \tau/\beta \sim 1 \end{cases}$$

Tauberian approximation: the two-point function with **less than 10% error!**

The Tauberian approximation is very good!



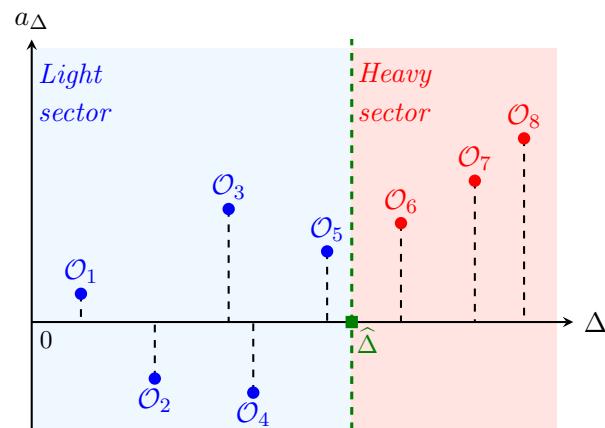
Numerical Approach

[2411.00978 Barrat, Marchetto, Miscioscia, EP]

Numerical method

Inspired by [Gliozzi 2013] [Poland, Prilepina, Tadić' 2023] [W. Li 2023]

1. **Input:** zero Temperature spectrum and **Output:** a_Δ & c_i .
2. Truncate the sum + *improved* Tauberian asymptotic:



$$f(\ell) = \sum_{\Delta < \hat{\Delta}} a_\Delta F(\Delta, \ell) + \sum_{\Delta > \hat{\Delta}} a_\Delta^T F(\Delta, \ell)$$

Light operators

Heavy operators:
Tauberian

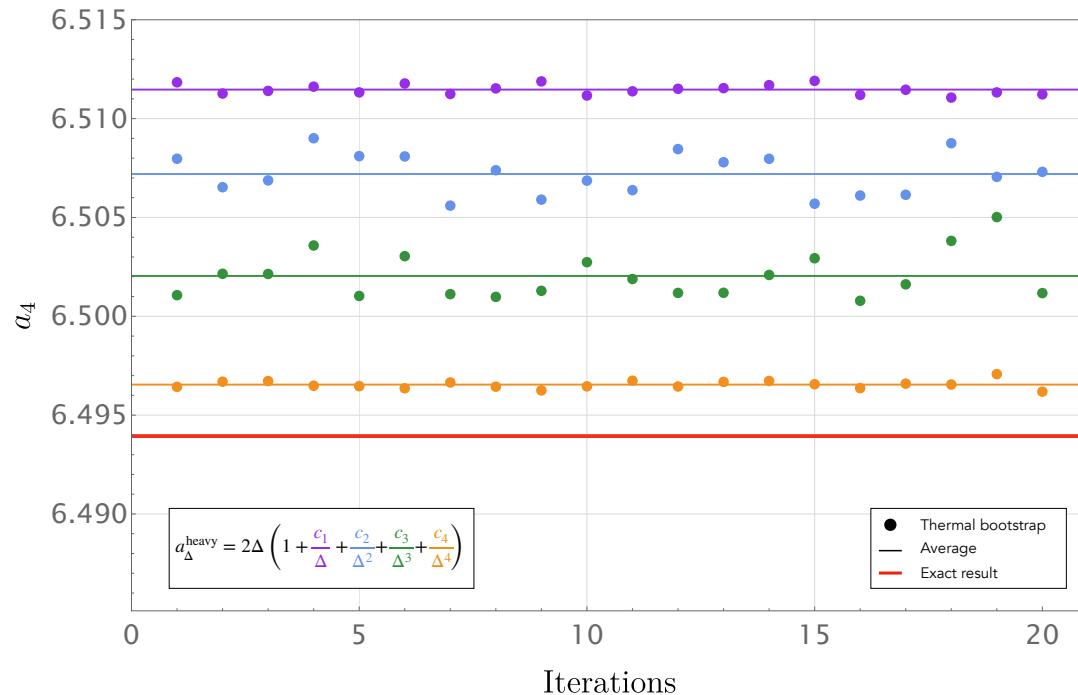
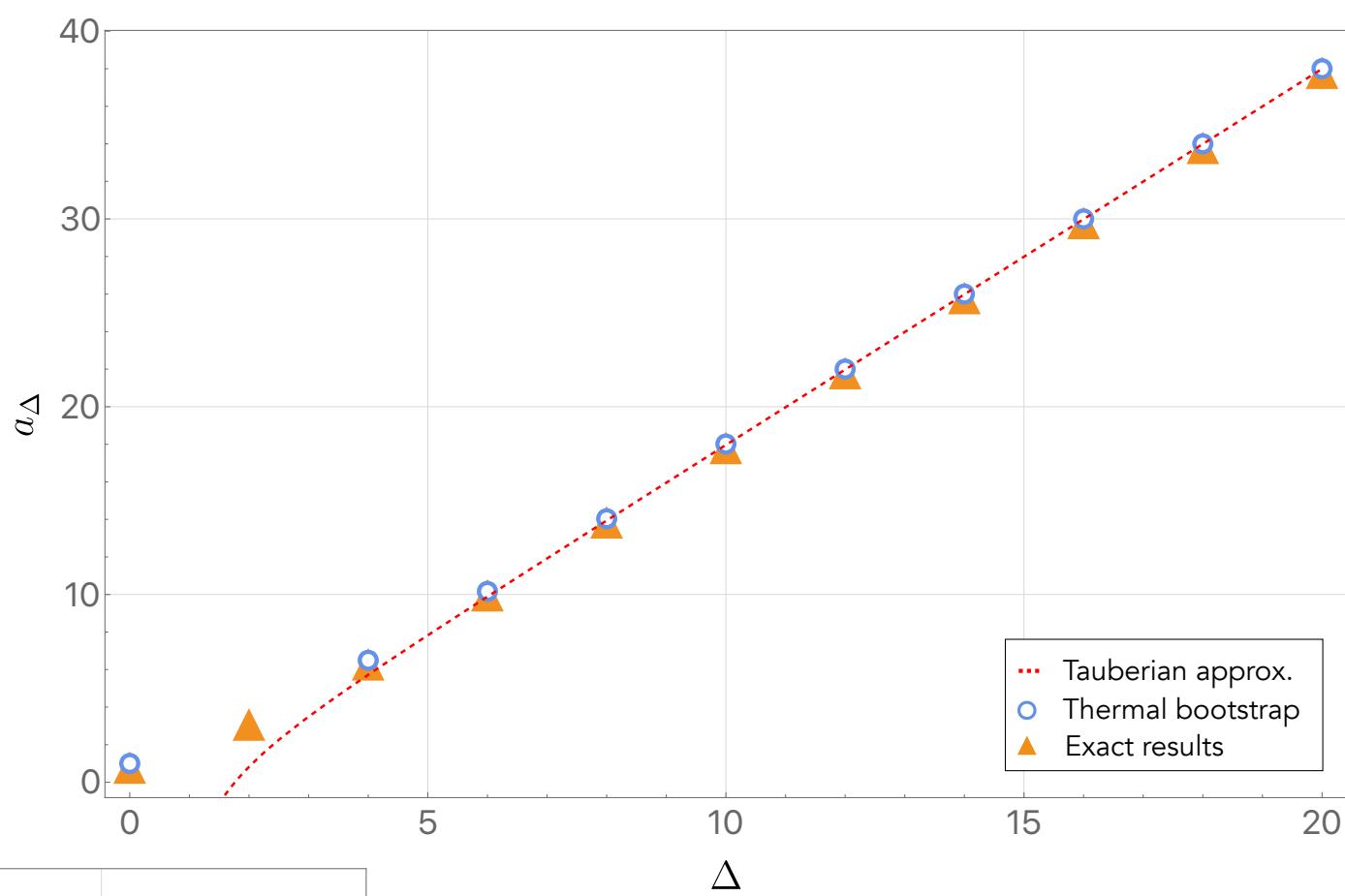
$$a_\Delta^T \sim \frac{\Delta^{2\Delta_\phi - 1}}{\Gamma(2\Delta_\phi)} \delta\Delta \left(1 + \frac{c}{\Delta} + \dots \right)$$

3. Numerically minimize with “random” coefficients the square of the sum rules.

$$\min \left[\sum_{\ell \leq \ell_{max}} r_\ell f^2(\ell) \right]$$

Random coefficients

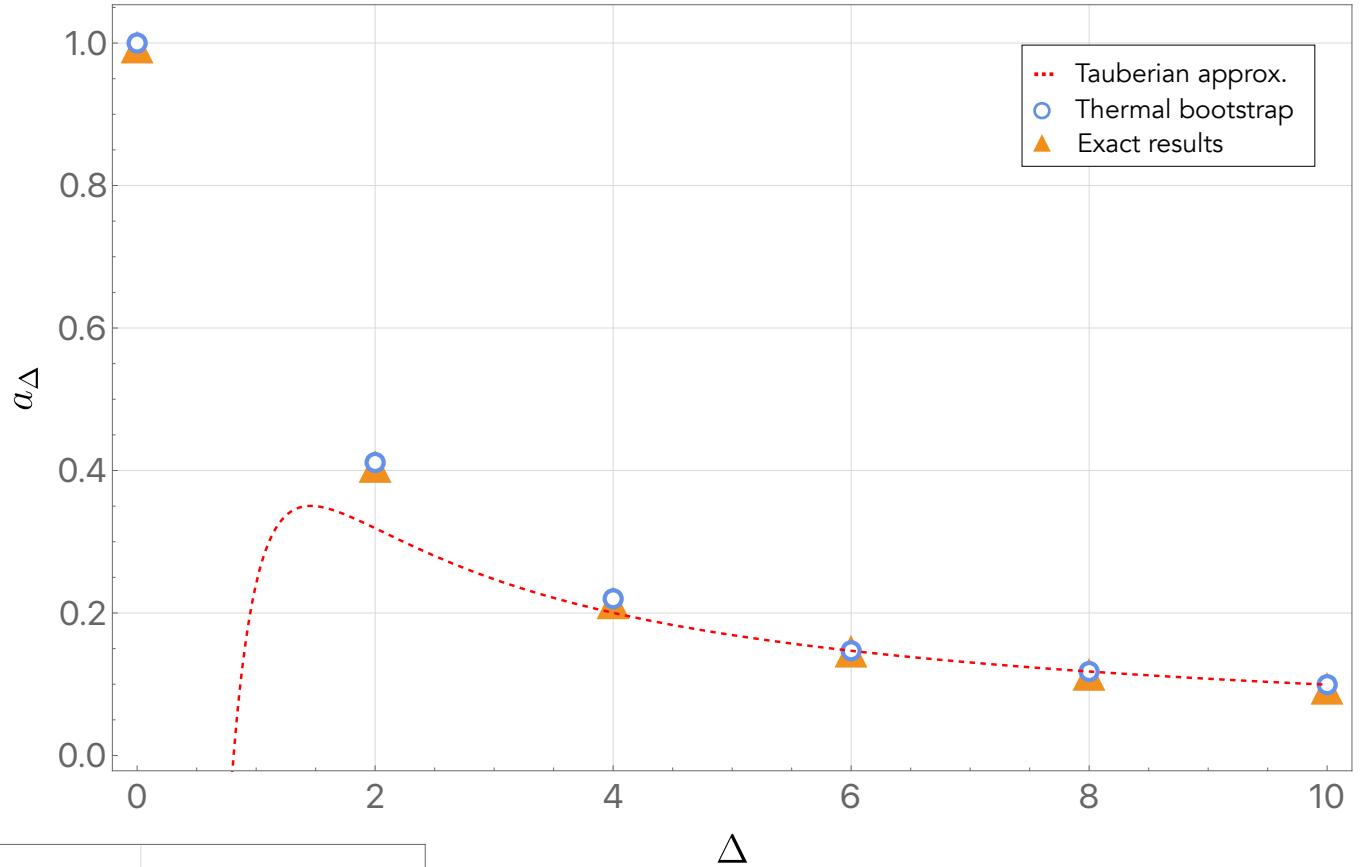
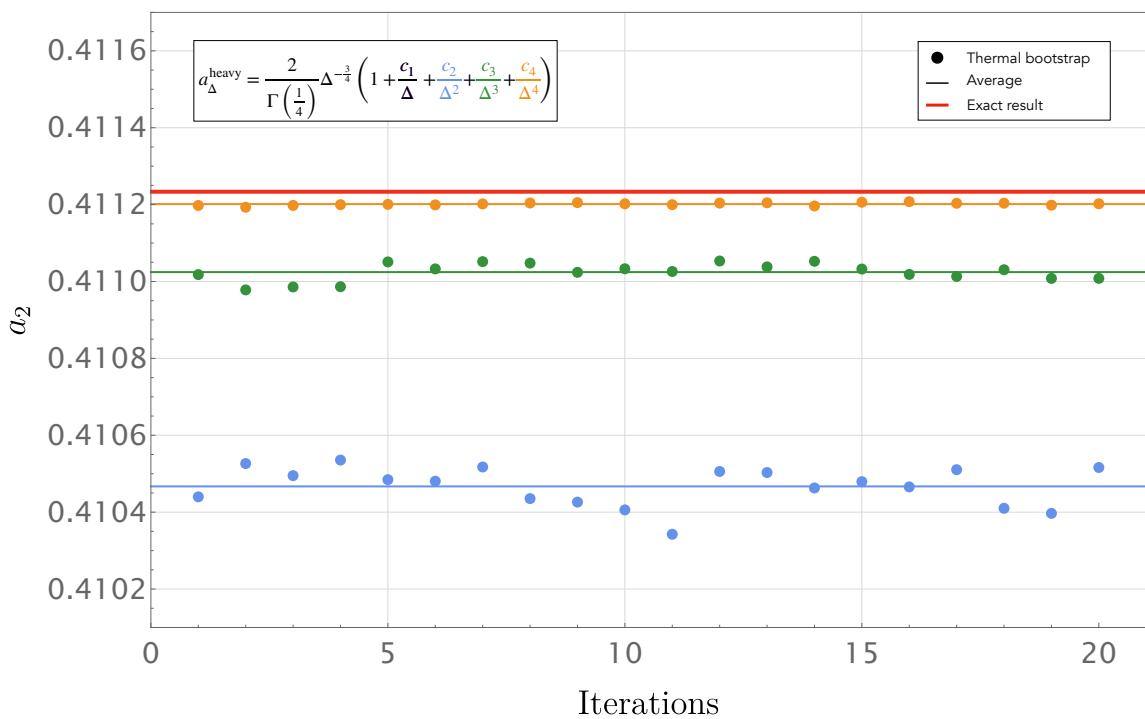
4d Free theory with $\Delta_\phi = 1$



The **systematic error**
reduces as we add more
corrections to the
Tauberian approximation.

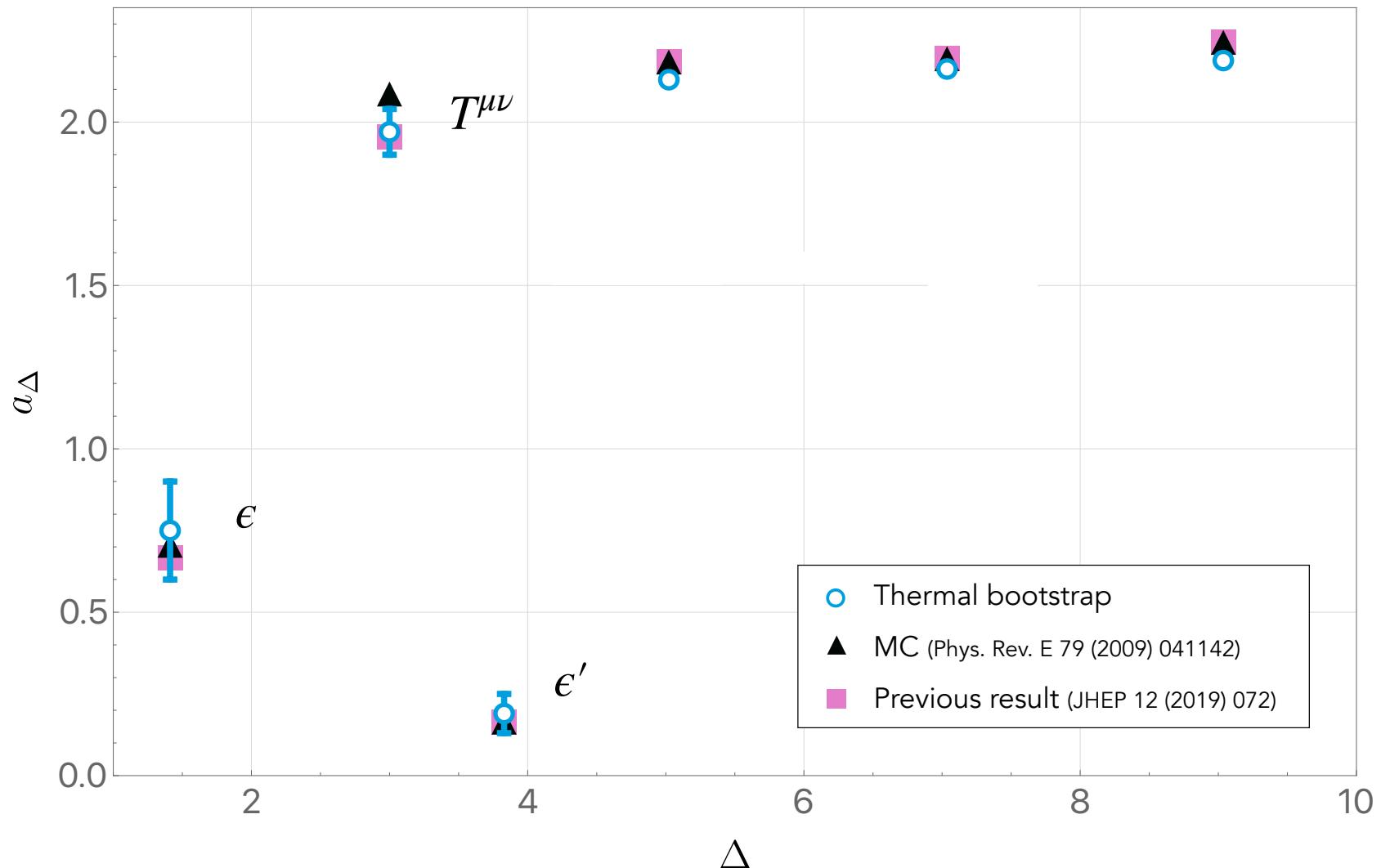
2d Ising

$\langle \sigma \sigma \rangle_\beta$

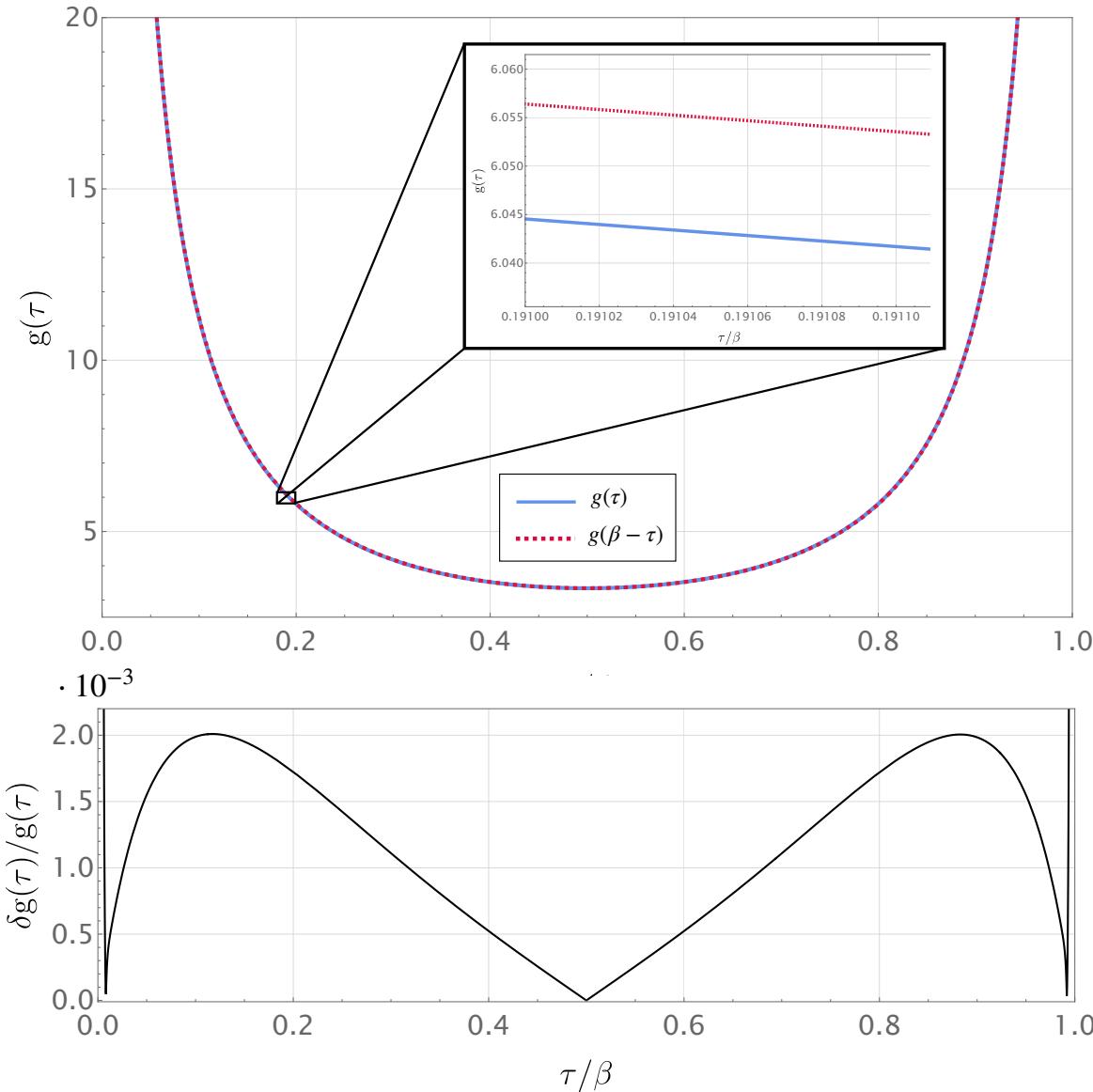


The **systematic error**
reduces as we add more
corrections to the
Tauberian approximation.

3d Ising $\langle \sigma \sigma \rangle_\beta$



3d Ising $\langle \sigma \sigma \rangle_\beta$



$$g(\tau) = \tau^{-2\Delta_\phi} \sum_{\Delta} \frac{a_{\Delta}}{\beta^{\Delta}} \tau^{\Delta}$$

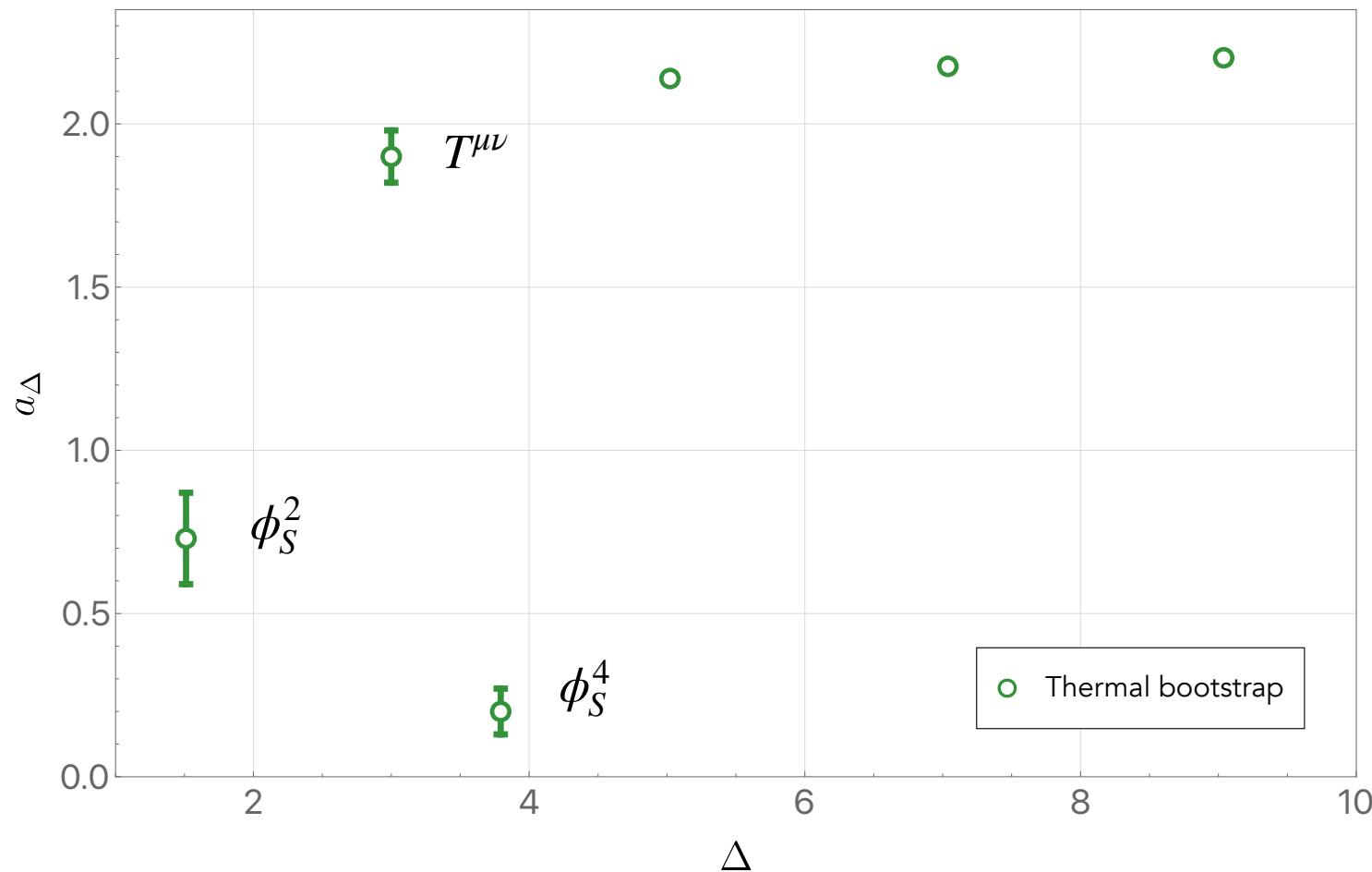
$$\frac{\partial^\ell}{\partial \tau^\ell} \left[g\left(\frac{\beta}{2} + \tau\right) - g\left(\frac{\beta}{2} - \tau\right) \right]_{\tau=0} = 0$$

The failure of KMS is only of order 10^{-3} !

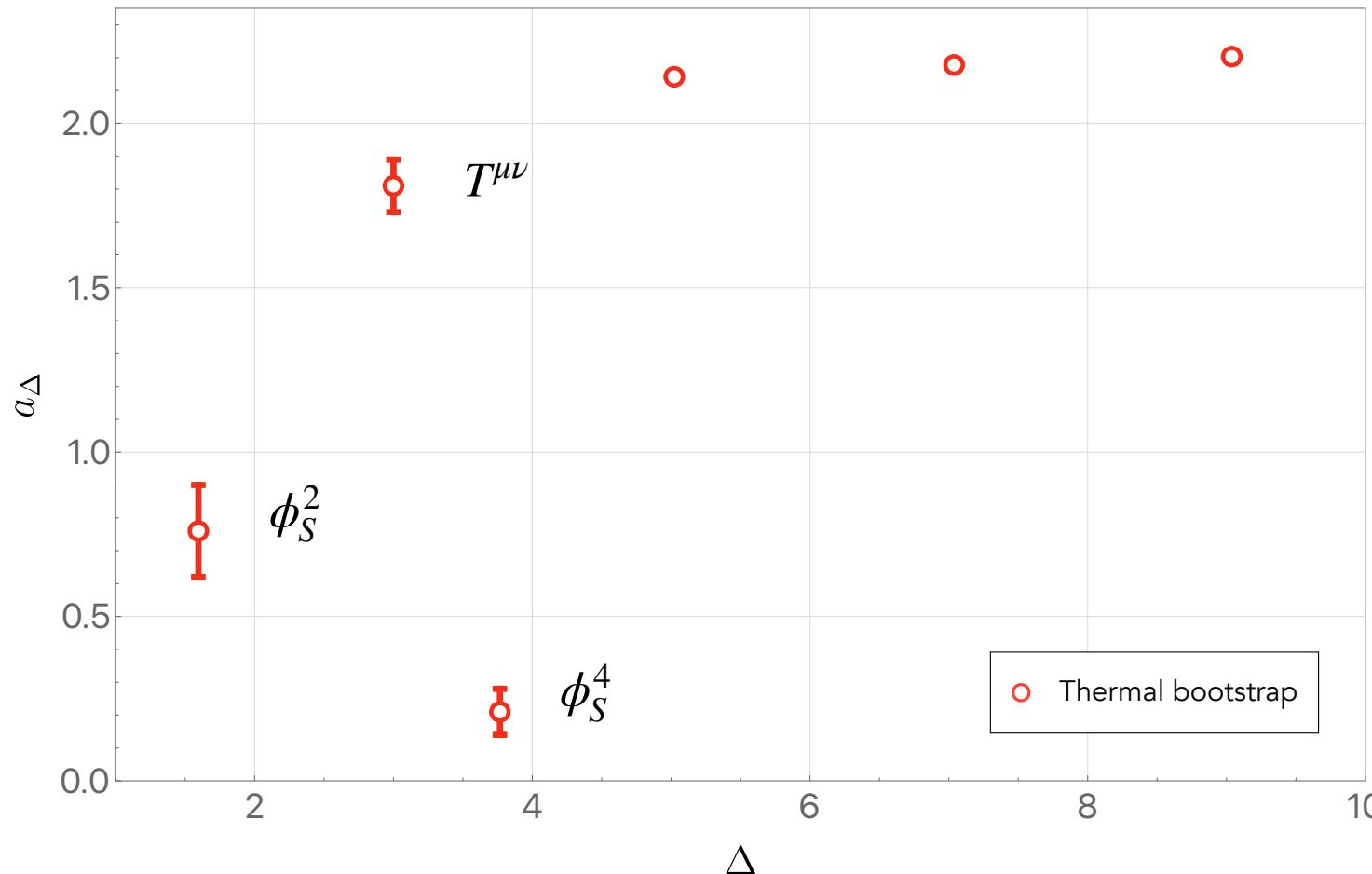
Keeping only the first 3 light operators and seven derivatives

Each plot takes a couple of minutes on a laptop!

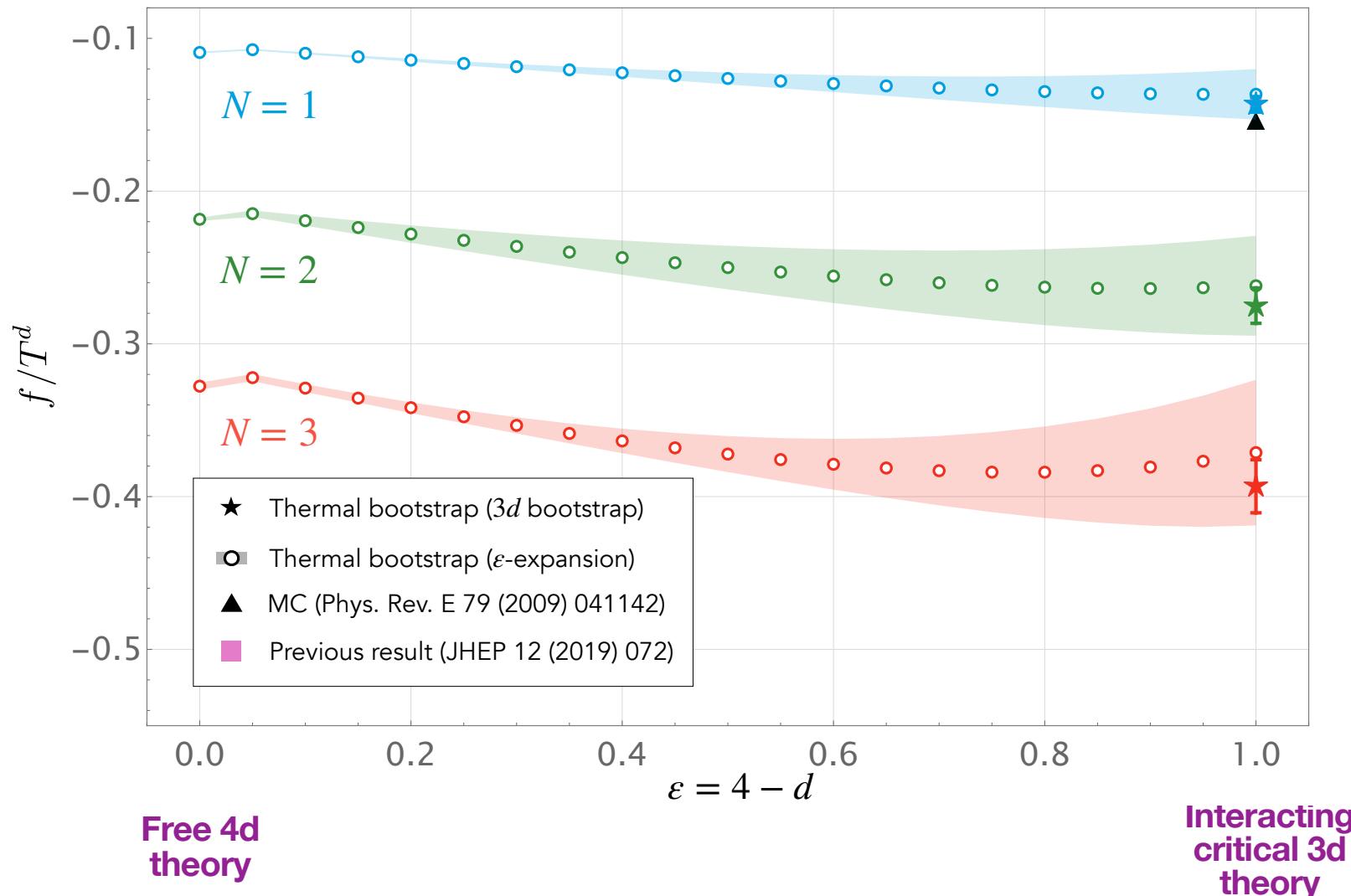
The 3d $O(2)$ XY model



The 3d O(3) Heisenberg model



Free energy across dimensions



[2505.20403 Bulgarelli, Caselle, Nada, Panero] new MC: systematic shift but qualitative trend is the same

Analytic Approach

[2506.06422 Barrat, Bozkurt, Marchetto, Miscioscia, EP]

Analytic bootstrap

Zero Temperature

Large spin expansion

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin 2012]
[Komargodski, Zhiboedov 2012]

Inversion formula

[Caron-Huot 2017]

Dispersion Relation

[Carmi, Caron-Huot 2019]

Thermal

Tauberian approximation

[Marchetto, Mischioscia, EP 2023]

Applied to 3d Ising

[Iliesiu, Koloğlu, Mahajan, Perlmutter, Simmons-Duffin 2018]

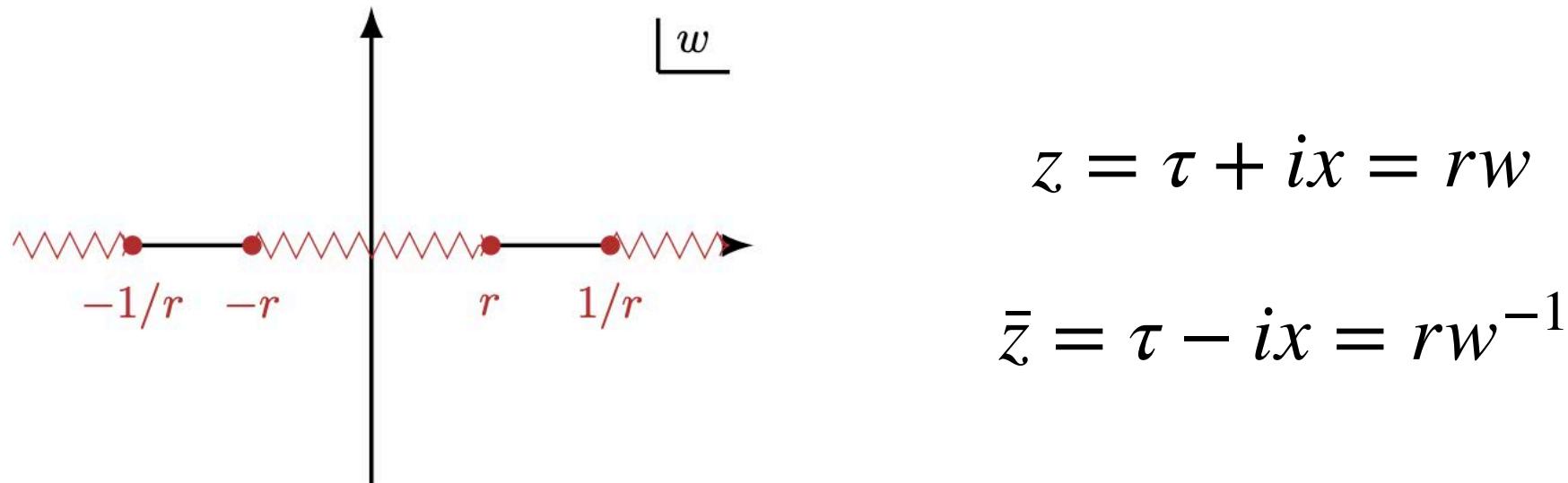
Proposed but never used

[Alday, Koloğlu, Zhiboedov 2020]

Analytic structure

The analytic structure of the thermal 2pt function was already in

[Iliesiu, Koloğlu, Mahajan, Perlmutter, Simmons-Duffin 2018]

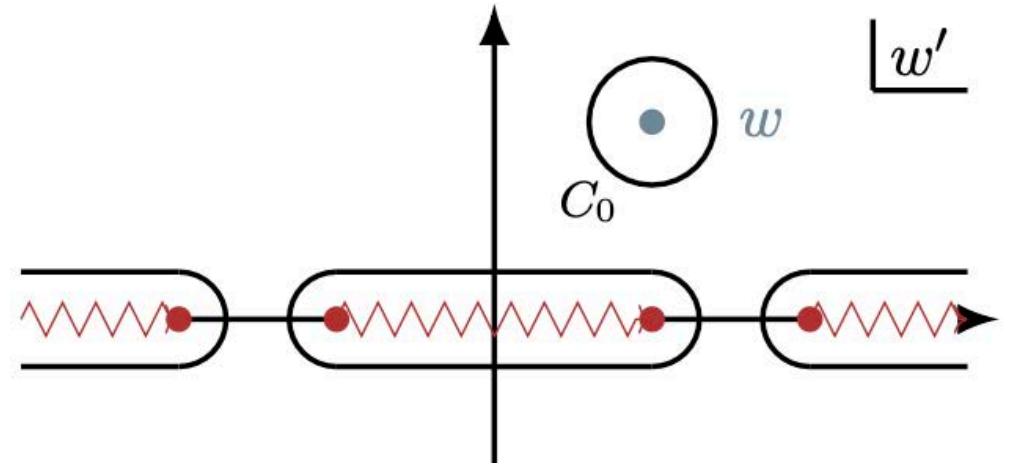


We want to learn how to reconstruct the 2pt functions from it.

Dispersion Relation

The thermal dispersion relation
was written in:

[Alday, Koloğlu, Zhiboedov 2020]



$$g_{DR}(r, w) = \oint_{C_0} \frac{dw'}{2\pi i} \frac{g(r, w')}{w' - w} = \int_0^r \frac{dw'}{\pi i} \frac{w^2(1 - w')(1 + w')(1 + w^2)}{w'(w' - w)(w' + w)(1 - ww')(1 + ww')} \text{Disc } g(r, w')$$

⇒ The Kernel $K(w, w')$

*But never tested or used. We put it to the use
combining it with OPE decomposition!*

4d Free theory

We can compute the discontinuity of the two point function

$$g(z, \bar{z}) = \sum_{\mathcal{O}} \frac{a_{\mathcal{O}}}{\beta^{\Delta}} f_{\Delta, J}(z, \bar{z})$$

block by block in the OPE expansion: i.e. $\text{Disc}[g(z, \bar{z})] = \sum_{\mathcal{O}} \frac{a_{\mathcal{O}}}{\beta^{\Delta}} \text{Disc}[f_{\Delta, J}(z, \bar{z})]$

$$f_{\Delta, J}(z, \bar{z}) = ((1-z)(1-\bar{z}))^{\frac{\Delta}{2} - \Delta_{\phi}} C_J^{(\nu)} \left(\frac{z + \bar{z}}{2\sqrt{z\bar{z}}} \right)$$

For $\Delta_{\phi} = 1$ and $d = 4$ only the identity operator contributes to the discontinuity.

$$\text{Disc}[\mathbf{1}] = \text{Disc}((1-z)(1-\bar{z}))^{-\Delta_{\phi}} = -2i \sin(\pi \Delta_{\phi}) ((1-z)(\bar{z}-1))^{-\Delta_{\phi}} \Theta(\bar{z}-1)$$

Naive Free theory

Doing the integral we get:

$$g_{DR}(z, \bar{z}) = \int_0^r K(w, w') \text{Disc } [\mathbf{1}] = \frac{1}{(1-z)^{\Delta_\phi}(1-\bar{z})^{\Delta_\phi}} + \frac{1}{(1+z)^{\Delta_\phi}(1+\bar{z})^{\Delta_\phi}}$$

This result has three problems:

- * It is **not** KMS invariant.
- * After block expansion: **incorrect** $a_{\mathcal{O}}$'s.
- * The identity contribution is **missing**.

\mathcal{O}	$a_{\mathcal{O}}$ exact	from DR	from LIF
1	1	0	0
$[\phi\phi]_{0,J}$	$2\zeta(2+J)$	2	2

Correct Free theory

We found two ways of fixing all those problems:

- * First attempt: add “arcs” and a “KMS compensator”.
- * More elegant: make the DR KMS invariant to start with.

Inspired by [Dalimil Mazáč 2018]

Both give the same result. Just saw the second one today.

KMS Dispersion Relation

Inspired by [Dalimil Mazáč 2018]

Making the DR KMS invariant from the beginning:

$$g_{KMS DR}(z, \bar{z}) = \frac{1}{2} \sum_{m \in \mathbb{Z}} g_{DR}(z - m, \bar{z} - m)$$

- * This is automatically KMS invariant.
- * Directly gives the correct thermal OPE coefficients.
- * The identity contribution is included, no arcs needed.

O(N) model in ϵ -expansion

Now two operators contribute to the discontinuity:

$$\phi \times \phi = 1 + \phi^2$$

This is because the conformal dimension of ϕ^2 is not longer integer

$$\Delta_{\phi^2} = 2 + \epsilon \gamma_{\phi^2}$$

And all the higher operators have anomalous dimensions of order ϵ^2 .

So to this order they do not contribute to the discontinuity.

O(N) model in ϵ -expansion

We have two new contributions at order ϵ :

- * One from expanding the identity contribution around $\Delta_\phi = 1 - \frac{\epsilon}{2}$

$$g_{DR}(z, \bar{z}) = \int_0^r K(w, w') \text{Disc} [1] = \frac{1}{(1-z)^{\Delta_\phi}(1-\bar{z})^{\Delta_\phi}} + \frac{1}{(1+z)^{\Delta_\phi}(1+\bar{z})^{\Delta_\phi}}$$

- * And one from the anomalous dimension of ϕ^2

$$\text{Disc} [\phi^2] = -\gamma_{\phi^2} \frac{i\pi z(\bar{z} - z\bar{z})}{z-1} \Theta(\bar{z} - 1)$$

O(N) model in ϵ -expansion

With both methods we get:

Operator \mathcal{O}	$a_{\mathcal{O}}$	KMS DR	DR	LIF
$\mathbb{1}$		1	0	0
$[\phi\phi]_{0,J \geq 2}$	$-2\zeta'(2+J) - \frac{1}{J}a_{\phi^2}^{(0)}\gamma_{\phi^2}\zeta(J)$		$-\frac{1}{J}a_{\phi^2}^{(0)}\gamma_{\phi^2}$	$-\frac{1}{J}a_{\phi^2}^{(0)}\gamma_{\phi^2}$
$[\phi\phi]_{1,J}$	$\frac{1}{J+2}a_{\phi^2}^{(0)}\gamma_{\phi^2}\zeta(2+J)$		$\frac{1}{J+2}a_{\phi^2}^{(0)}\gamma_{\phi^2}$	$\frac{1}{J+2}a_{\phi^2}^{(0)}\gamma_{\phi^2}$

* A new tower of operators $\phi \square \partial^J \phi \propto \epsilon \phi \partial^J \phi^3$.

* We check our results against **Feynman diagram** computation.

More results with DR

* 2D theories

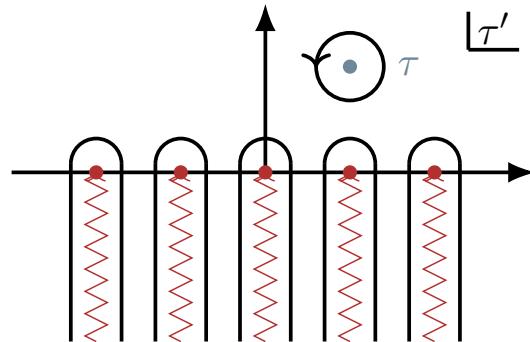
* 3D $O(N)$ large N

Infinite number of contributions to discontinuity

* Relations with momentum space.

[Andrea Manenti 2019]

Complex τ plane DR



$$g(\tau) = \sum_{m=-\infty}^{\infty} \frac{1}{2\pi i} \int_{-i\infty}^0 d\tau' \frac{\text{Disc } g(\tau')}{\tau' - \tau + \frac{m}{\beta}} + g_{\text{arcs}}$$

Computing discontinuity **block by block** in OPE $\text{Disc } g(\tau) = \sum_{\Delta} a_{\Delta} \text{Disc } \tau^{\Delta - 2\Delta_{\phi}}$

$$g(\tau) = \sum_{\Delta} \frac{a_{\Delta}}{\beta^{\Delta}} \left(\zeta_H \left(2\Delta_{\phi} - \Delta, \frac{\tau}{\beta} \right) + \zeta_H \left(2\Delta_{\phi} - \Delta, 1 - \frac{\tau}{\beta} \right) \right) + \kappa$$

expansion in GFF blocks

$$\zeta_H(s, a) = \sum_{n=0}^{\infty} \frac{1}{(n+a)^s}$$

Obeys all bootstrap requirements (OPE, KMS, analyticity & Regge).

Arcs (constant κ - iff $g(\tau)$ bounded) that can be fixed imposing clustering.

Improving Tauberian

Expanding
$$g(\tau) = \sum_{\Delta} a_{\Delta} \left(\zeta_H(2\Delta_{\phi} - \Delta, \tau) + \zeta_H(2\Delta_{\phi} - \Delta, 1 - \tau) \right) + \kappa$$

$g_{GFF}(\tau)$

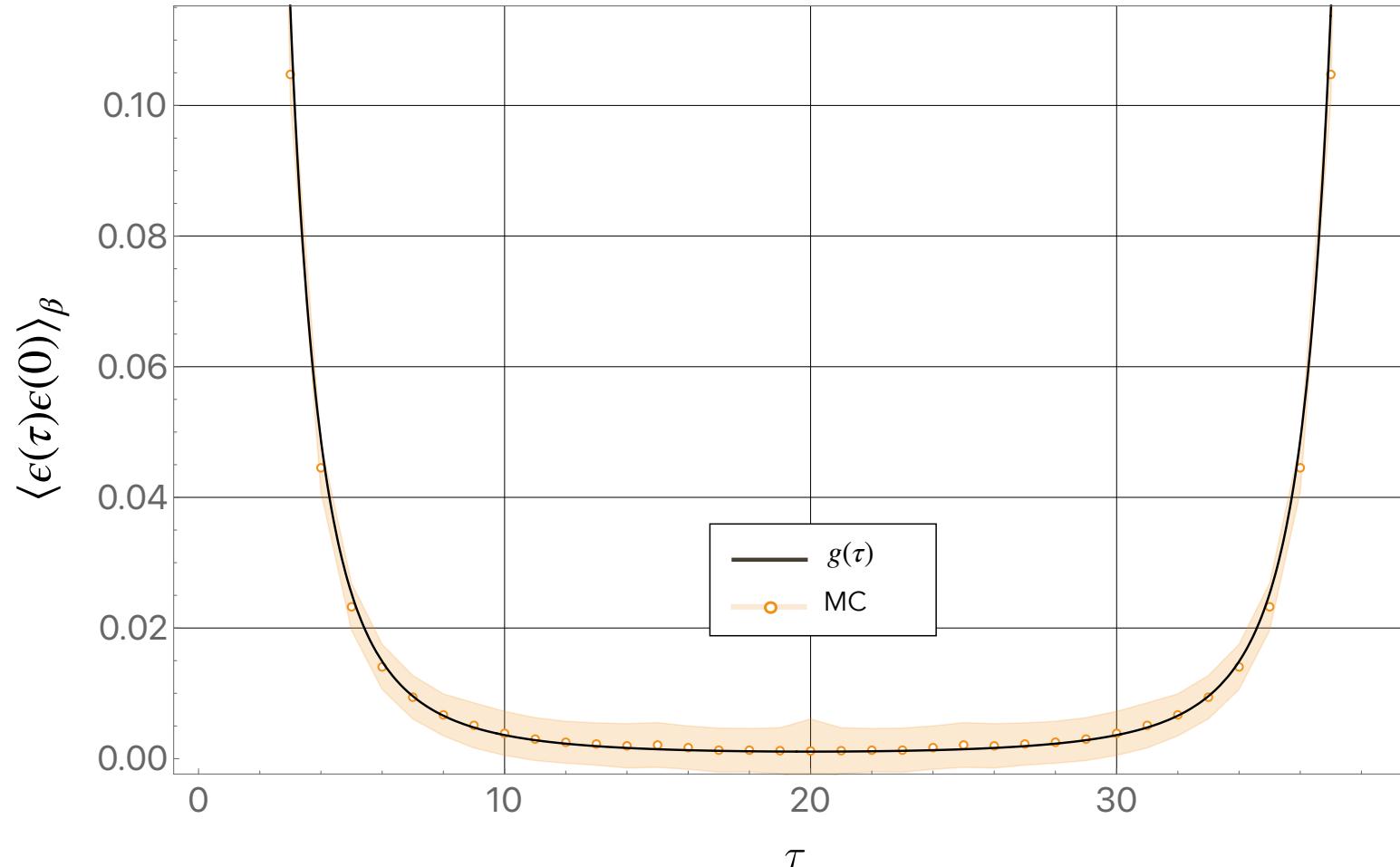
We can exactly compute corrections to Tauberian:

Laplace transform:

$$\begin{aligned}
 a_{\Delta} \underset{\Delta \gg 1}{\approx} & 2 \frac{\Delta^{2\Delta_{\phi}-1}}{\Gamma(2\Delta_{\phi})} \left(1 + \frac{\Delta_{\phi}(1-2\Delta_{\phi})}{\Delta} + \frac{(\Delta_{\phi}-1)\Delta_{\phi}(2\Delta_{\phi}-1)(6\Delta_{\phi}-1)}{6\Delta^2} + \dots \right) & \text{Identity} \\
 & + \frac{a_{\Delta_1}\Gamma(2\Delta_{\phi})}{\Gamma(2\Delta_{\phi}-\Delta_1)} \frac{1}{\Delta^{\Delta_1}} \left(1 + \frac{(\Delta_1-2\Delta_{\phi}+1)(\Delta_1+2\Delta_{\phi})}{2\Delta} + \dots \right) + \dots & \text{first light operator} \\
 & + \frac{a_{\Delta_2}\Gamma(2\Delta_{\phi})}{\Gamma(2\Delta_{\phi}-\Delta_2)} \frac{1}{\Delta^{\Delta_2}} \left(1 + \frac{(\Delta_2-2\Delta_{\phi}+1)(\Delta_2+2\Delta_{\phi})}{2\Delta} + \dots \right) + \dots & \text{second light operator}
 \end{aligned}$$

This allows to significantly improve our numerical method!

New numerical results



3d Ising

Holographic CFTs

[2510.20894 Barrat, Bozkurt, Marchetto, Miscioscia, EP]

Holographic CFTs

***** CFT on $S_\beta^1 \times \mathbb{R}^{d-1}$: Black Brane in AdS

***** CFT on $S_\beta^1 \times S_R^{d-1}$: Black Hole in AdS

***** Einstein gravity coupled to a scalar of mass

$$m^2 = \Delta_\phi(\Delta_\phi - d)$$

Holographic CFT

* The spectrum appearing in the OPE:

* Identity operator: $\Delta = 0, J = 0$

* Double trace: $\Delta_{n,J} = 2\Delta_\phi + 2n + J$

* Multi-Stress-tensors: $\Delta_n = dn, J_n = 0, 2, \dots, dn/2$

* The OPE coefficients:

$$a_{T^{\mu\nu}} = \frac{\pi^4 \Delta_\phi}{120}$$

$$a_{T^{\mu\rho}T_\rho^\nu} = \frac{\pi^8 \Delta_\phi (7\Delta_\phi^3 - 23\Delta_\phi^2 + 22\Delta_\phi + 12)}{201600(\Delta_\phi - 3)(\Delta_\phi - 2)}$$

$$a_{T^{\mu\rho}T^{\nu\sigma}} = \frac{\pi^8 \Delta_\phi (7\Delta_\phi^2 + 6\Delta_\phi + 4)}{201600(\Delta_\phi - 2)}$$

$$a_{T^{\mu\nu}T_{\mu\nu}} = \frac{\pi^8 \Delta_\phi (7\Delta_\phi^4 - 45\Delta_\phi^3 + 100\Delta_\phi^2 - 80\Delta_\phi + 48)}{201600 (\Delta_\phi - 4)(\Delta_\phi - 3)(\Delta_\phi - 2)}$$

Bootstrap & Holography

* Naively the discontinuity allows only:

$$\Delta_\phi = 1 : g(\tau) = \frac{\pi^2}{\beta^2} \csc^2\left(\frac{\pi\tau}{\beta}\right)$$

$$\Delta_\phi = 2 : g(\tau) = \frac{\pi^4}{3\beta^4} \csc^4\left(\frac{\pi\tau}{\beta}\right) \left[\cos\left(\frac{2\pi\tau}{\beta}\right) + 2 \right]$$

$$\Delta_\phi = 3 : g(\tau) = \frac{\pi^6}{60\beta^6} \csc^6\left(\frac{\pi\tau}{\beta}\right) \left[\cos\left(\frac{4\pi\tau}{\beta}\right) + 26 \cos\left(\frac{2\pi\tau}{\beta}\right) + 33 \right] + \textcolor{orange}{a_T} \frac{\pi^2}{\beta^6} \csc^2\left(\frac{\pi\tau}{\beta}\right)$$

$$\Delta_\phi = 4 : g(\tau) = \frac{\pi^8}{2520\beta^8} \csc^8\left(\frac{\pi\tau}{\beta}\right) \left[\cos\left(\frac{6\pi\tau}{\beta}\right) + 120 \cos\left(\frac{4\pi\tau}{\beta}\right) + 1191 \cos\left(\frac{2\pi\tau}{\beta}\right) + 1208 \right] + \textcolor{orange}{a_T} \frac{\pi^4}{3\beta^8} \csc^4\left(\frac{\pi\tau}{\beta}\right) \left[\cos\left(\frac{2\pi\tau}{\beta}\right) + 2 \right]$$

$$\Delta_\phi = 5 : g(\tau) = \frac{\pi^{10}}{181440\beta^{10}} \csc^{10}\left(\frac{\pi\tau}{\beta}\right) \left[\cos\left(\frac{8\pi\tau}{\beta}\right) + 502 \cos\left(\frac{6\pi\tau}{\beta}\right) + 14608 \cos\left(\frac{4\pi\tau}{\beta}\right) + 88234 \cos\left(\frac{2\pi\tau}{\beta}\right) + 78095 \right] + \textcolor{orange}{a_T} \frac{\pi^6}{60\beta^{10}} \csc^6\left(\frac{\pi\tau}{\beta}\right) \left[\cos\left(\frac{4\pi\tau}{\beta}\right) + 26 \cos\left(\frac{2\pi\tau}{\beta}\right) + 33 \right] + \textcolor{red}{a_{[T^2]}} \frac{\pi^2}{\beta^{10}} \csc^2\left(\frac{\pi\tau}{\beta}\right)$$

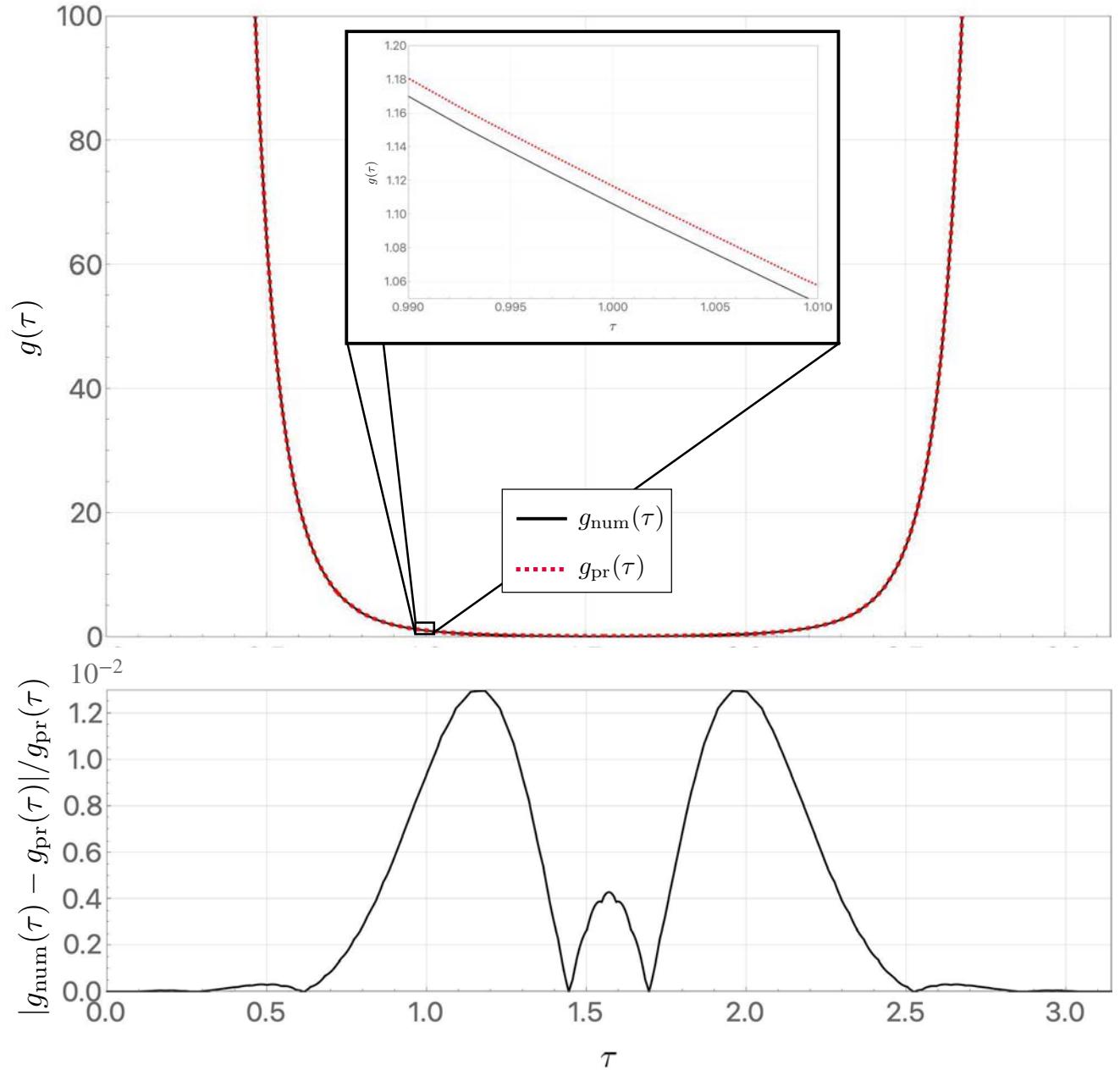
Compare with OPE coefficients of [\[Fitzpatrick, Huang 2019\]](#)

$$\textcolor{orange}{a_T} = \frac{\pi^4 \Delta_\phi}{40}, \quad \textcolor{red}{a_{[T^2]}} = \textcolor{orange}{a_T}^2 \frac{63\Delta_\phi^4 - 413\Delta_\phi^3 + 672\Delta_\phi^2 - 88\Delta_\phi + 144}{126\Delta_\phi(\Delta_\phi - 4)(\Delta_\phi - 3)(\Delta_\phi - 2)}$$

Compare with numerics

Solving the wave
equation in the bulk
for $\Delta_\phi = 3$

The discrepancy is
always below 1.3%



Witten diagrams in the Bulk

A gravitational interpretation of this result:

Expanding the black brane metric around thermal AdS, we can compute the thermal correlator perturbatively in $\varepsilon = L_{AdS}/\beta$

$$\langle \phi(\tau) \phi(0) \rangle_\beta = \text{Diagram 1} + \varepsilon^d \text{Diagram 2} + \varepsilon^{2d} \left(\text{Diagram 3} + \text{Diagram 4} \right) + \dots = \sum_n \frac{a_{[T^n]}}{\beta^{dn}} g_{GFF} \left(\Delta_\phi - \frac{dn}{2}, \tau \right)$$

Diagram 1 Diagram 2 Diagram 3 Diagram 4

Thermal Ads Graviton modes

The Witten diagrams reproduce the GFF decomposition.

But there is more...

* The 3pt coefficients have poles: $a_\Delta \sim \frac{1}{\Delta_\phi - n} , \quad n \in \mathbb{N}$

* We need to regularise:

$$\frac{1}{\Delta_\phi - n} g_{GFF} \left(\Delta_\phi - \frac{\Delta}{2}, \tau \right) \rightarrow \frac{1}{\Delta_\phi + \varepsilon - n} g_{GFF} \left(\Delta_\phi + \varepsilon - \frac{\Delta}{2}, \tau \right)$$

* OPE: Δ degeneracy between some d.t. and m.s. & as $\Delta_\phi \rightarrow n$

$$\frac{A}{\Delta_\phi - n} \left(\frac{\tau}{\beta} \right)^{\Delta_{d.t.} - 2\Delta_\phi} - \frac{A}{\Delta_\phi - n} \left(\frac{\tau}{\beta} \right)^{\Delta_{m.s.} - 2\Delta_\phi} = 2A \log \left(\frac{\tau}{\beta} \right) \left(\frac{\tau}{\beta} \right)^{\Delta_{m.s.} - 2\Delta_\phi}$$

* These logs can be seen also from the bulk [Li, Mai, Lü 2019]

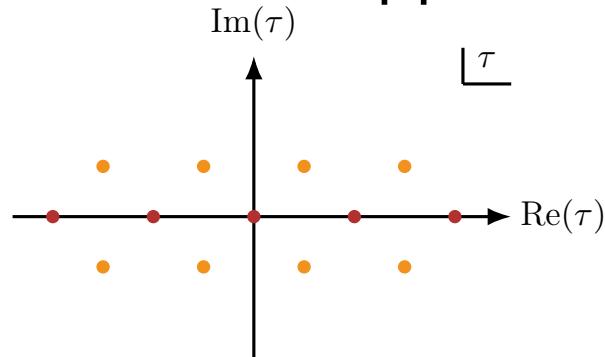
The complete answer

$$g(\tau) = \sum_{\Delta < 2\Delta_\phi} \frac{a_\Delta}{\beta^\Delta} g_{GFF} \left(\Delta_\phi - \frac{\Delta}{2}, \tau \right) - 2 \sum_{\Delta \geq 2\Delta_\phi} \frac{\text{Res}_{\Delta_\phi} a_\Delta}{\beta^\Delta} g_{GFF}^{(1,0)} \left(\Delta_\phi - \frac{\Delta}{2}, \tau \right) + g_{arcs}(\tau)$$

* The first part dominates for real τ and we can compute it exactly.

* The regularised part is an infinite sum and we can approximate it.

* It creates new poles on the τ plane.



* They are known to be the bouncing singularities and we remove them using the arcs.

Conclusions

Where we currently are

- * Numerical approach to the thermal bootstrap.
- * Analytical approach (thermal Dispersion Relation).
- * Application to Holographic CFTs.
- * Initiated the $S_\beta^1 \times S_R^{d-1}$ geometry for Holographic CFTs.
[2510.20894 Barrat, Bozkurt, Marchetto, Miscioscia, EP]
- * Temporal line defects (Polyakov loops).
[2407.14600 Barrat, Fiol, Marchetto, Miscioscia, EP]

} In tandem

Where are we going?

- * $\mathcal{N}=4$ SYM & ABJM using the spectrum from integrability.
- * Apply both approaches to Polyakov loops.
- * Study the $S^1 \times S^{d-1}$ geometry.
- * Black holes, hydro and CFT data.
- * Going away from criticality.

Thank you!