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Motivation

  Quantum critical points: nonzero temperature in the lab.


  Black Holes through AdS/CFT.


 CFTs on non-trivial manifolds.
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Thermal CFTs

S1
β × ℝd−1 β = 1

T

4

Dilatations

Translations

Spatial rotations

Boosts

Special conformal

Thermal effects are captured by placing the theory on a circle

With periodic boundary conditions for the bosons  
and anti-periodic for the fermions.

Broken symmetries are not lost but 
captured by broken Ward Identities.



Thermal CFTs

Δ , f123

Assume we know the zero temperature CFT data: 

and are interested in computing new finite temperature data:

for neutral scalar operators. 

And more generally for all traceless symmetric tensors: 

the non-zero thermal one-point functions: 

⟨𝒪(x)⟩β = b𝒪
βΔ𝒪

⟨𝒪μ1…μJ(x)⟩β =
b𝒪J

βΔ𝒪J
(eμ1⋯eμJ − traces)



Thermal CFTs

𝒪1(x) × 𝒪2(0) = ∑
𝒪

f1 2𝒪 |x |Δ𝒪−Δ1−Δ2−J xμ1
…xμJ

𝒪μ1…μJ (0)

We can still use the OPE: 

But now the radius of convergence is finite: |x | < β

[Iliesiu, Koloğlu, Mahajan, Perlmutter, Simmons-Duffin 2018]

φ φ

Figure 1: The OPE on S1

�
⇥Rd�1 is valid if the two operators lie inside a sphere. The largest

possible sphere has diameter �, wrapping entirely around the S1 such that it is tangent to
itself. Here, we illustrate such a sphere (blue) in d = 2.

and f��O is the three-point coe�cient

h�(x1)�(x2)O
µ1···µJ (x3)i = f��O

Zµ1 · · ·ZµJ � traces
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We often normalize O so that cO = 1. Note that because descendants have vanishing
one-point functions, we need only the leading (non-derivative) term in the OPE for each
multiplet. Plugging (2.5) into (2.8), the index contraction is given by a Gegenbauer poly-
nomial,11

|x|�J(xµ1 · · · xµJ )(e
µ1 · · · eµJ � traces) =

J !

2J(⌫)J
C(⌫)

J
(⌘), (2.11)

where ⌫ = d�2

2
, (a)n = �(a+n)

�(a)
is the Pochhammer symbol, and ⌘ = ⌧

|x|
. Thus, we obtain

g(⌧,x) =
X

O2�⇥�

aO
��

C(⌫)

J
(⌘)|x|��2�� , where

aO ⌘
f��ObO
cO

J !

2J(⌫)J
. (2.12)

We can think of |x|��2��C(⌫)

J
(⌘) as a two-point conformal block on S1

⇥ Rd�1.12

2.1.1 Free energy density

One of the most important thermal one-point coe�cients is bT , associated to the stress
tensor T µ⌫ . This is related to the free energy density of the thermal CFT as follows. From

11When the operators in the two-point function have spin, the appropriate generalization of the
Gegenbauer polynomial is described in [54].

12Note that aO is independent of the normalization of O. We sometimes quote values for the combination
bO/

p
cO, which changes sign under a redefinition O ! �O. We usually fix this ambiguity by choosing a

sign for some OPE coe�cient f��O involving O.
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|x | = x2 + τ2
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x2 = | | ⃗x | |2



Thermal 2pt functions
The two-point function of identical scalars , using the OPEϕ

⟨ϕ(τ, r)ϕ(0)⟩β = ∑
𝒪

a𝒪
βΔ𝒪

|x |Δ𝒪−2Δϕ C(ν)
J ( τ

|x | )
a𝒪 = b𝒪 f𝒪ϕϕ

J!
2J(ν)J

ν = d − 2
2

and the definition of the Gegenbauer polynomials: 

(ν)J = Γ(ν + J )
Γ(ν)

⟨ϕ(τ, r)ϕ(0)⟩β = ∑
𝒪

fϕϕ𝒪 |x |Δ𝒪−2Δϕ−J xμ1
…xμJ

⟨𝒪μ1…μJ⟩β

New Finite Temperature data
7

⟨𝒪μ1…μJ(x)⟩β =
b𝒪J

βΔ𝒪J
(eμ1⋯eμJ − tr)

|x | = x2 + τ2



Thermal crossing
Periodicity of the two-point function is captured by the 
KMS condition:

⟨ϕ(τ, x)ϕ(0,0)⟩β = ⟨ϕ(τ + β, x)ϕ(0,0)⟩β

Variation of KMS:

[Kubo 1957]

⟨ϕ (β/2 + τ) ϕ(0)⟩β
= ⟨ϕ (β/2 − τ) ϕ(0)⟩β

[El-Showk, Papadodimas 2011]

[Martin,Schwinger 1959]

The OPE expression does not manifestly satisfy KMS, thus 
imposing it gives a novel nontrivial consistency condition.
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Plan of the talk
 Sum rules from KMS and lesson for light operators


 Heavy operators: asymptotic OPE density


 A Numerical approach: Light + Heavy


 An Analytical approach: Dispersion Relation


 Application to Holographic CFTs



Sum Rules
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 OPE expand both sides of the El-Showk - Papadodimas formula


∑
𝒪∈ϕ×ϕ

b𝒪 f𝒪ϕϕ Fℓ,n(h, J) = 0

Sum rules from KMS

h = Δ − J

Fℓ,n(h, J ) = 1
2h+J

h − 2Δϕ

2
n (

h + J − 2Δϕ − 2n
ℓ ) 3F2

1 − J
2 , − J

2 , h
2 − Δϕ + 1

h
2 − Δϕ − n + 1, − J − ν + 1

1

 Then further expand the result in powers of  and . 


 Use the definition of Gegenbauer polynomials and the binomial theorem.

τ x

⟨ϕ (β/2 + τ, x) ϕ(0)⟩β
= ⟨ϕ (β/2 − τ, x) ϕ(0)⟩β

ℓ ∈ 2ℕ + 1 , n ∈ ℕ
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∑
𝒪∈ϕ×ϕ

b𝒪 f𝒪ϕϕ Fℓ,n(h, J) = 0

Sum rules from KMS

h = Δ − J

ℓ ∈ 2ℕ + 1 , n ∈ ℕ

Zero Temperature
Known data

Finite 
Temperature

New

We have an infinite set of linear equations for the combinations a𝒪 ∝ b𝒪 f𝒪ϕϕ

Difficulty: Thermal one-point functions not sign-definite.

Which is crucial for linear programming methods (standard numerical bootstrap).
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Γ (2Δϕ + ℓ)
Γ (2Δϕ)

= ∑
Δ≠0

aΔ
2Δ

Γ (Δ − 2Δϕ + 1)
Γ (Δ − 2Δϕ − ℓ + 1) ℓ ∈ 2ℕ + 1

Sum rules from KMS
The sum rules for a𝒪 ∝ b𝒪 f𝒪ϕϕ

 further simplified for x = 0

 for fixed aΔ = ∑
𝒪∈ϕ×ϕ

a𝒪 C(ν)
J (1) Δ

Operators of same  but different J cannot be distinguished because of .Δ x = 0
Generically this does not occur, unless there is extra symmetry, like for free theory.
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KMS sum rules: test & learn
4-dim free theory 

Observation: for small  only few light operators contribute. ℓ

Dashed straight lines: the LHS of the sum rule (identity contribution). The RHS plot adding operators.

Γ (2Δϕ + ℓ)
Γ (2Δϕ)

= ∑
Δ≠0

aΔ
2Δ

Γ (Δ − 2Δϕ + 1)
Γ (Δ − 2Δϕ − ℓ + 1)

 model at large N                       O(N)
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Heavy 
Operators
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Asymptotic thermal OPE density

Consider the simplified two-point function at :x = 0

⟨ϕ(τ)ϕ(0)⟩β = τ−2Δϕ ∑
𝒪∈ϕ×ϕ

a𝒪
τΔ𝒪

βΔ𝒪
= τ−2Δϕ ∫

∞

0
dΔ ρ(Δ) τΔ

βΔ

via introducing the spectral density ρ(Δ) = ∑
Δ′ 

δ(Δ′ − Δ) aΔ



Keep in mind, the physical spectrum is discrete   

More correctly: average density of OPE of Heavy operators 

ρ(Δ) Δ→∞∼ ∑
Δ′ 

δ(Δ′ − Δ) aΔ

∫
Δ

0
ρ(Δ̃)dΔ̃ Δ→∞∼ Δ2Δϕ

Γ(2Δϕ + 1) (1 + 𝒪 ( 1
Δ ))

ρ(Δ) Δ→∞∼ 1
Γ(2Δϕ) Δ2Δϕ−1

Asymptotic thermal OPE density

17

Using Tauberian theorems or Laplace transform the contribution of the identity:



Δϕi
= 1

2 + 𝒪 ( 1
N )

Δσ = 2 + 𝒪 ( 1
N )

aΔ
Δ→∞∼ 2

aΔ
Δ→∞∼ Δ2Δϕ−1

Γ(2Δϕ) δΔ

Ex. 3d O(N) at large N

18

⟨ϕ(τ)ϕ(0)⟩β ≃
∫

∞

0
dΔ Δ2Δϕ−1

Γ(2Δϕ)
(β − τ)Δ−2Δϕ

βΔ τ/β ≪ 1

∫
∞

0
dΔ Δ2Δϕ−1

Γ(2Δϕ)
τΔ−2Δϕ

βΔ τ/β ∼ 1

Figure 6: Exact OPE coe�cients a� in the case of a free scalar theory in four dimensions,

or a GFF in one dimension with �� = 1. Each one is represented by a blue dot. The plot

should be compared with the Tauberian prediction, represented as a continuous red line.

exact two-point function

τ ≈ β Taub. approx.

τ ≪ β Taub. approx.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

τ/β

f(τ
)

(a) (b)

Figure 7: Exact two-point function h�(⌧)�(0)i
�
, represented as a dashed blue line, and its

Tauberian approximation, divided into an approximation from left (continuous red line),

and an approximation from right (continuous black line). We also present the relative

di↵erence between the exact two-point function and the Tauberian estimation, i.e. the

quantity (h�(⌧)�(0)iTaub.
�

� h�(⌧)�(0)iexact.
�

)/h�(⌧)�(0)iexact.
�

. Left panel (a) The case

of four dimensional free theory. The maximum of the absolute value of the relative er-

ror is, as expected, in ⌧/� = 1/2 and it is ⇠ 0.156. Right panel (b) The case of the

O(N) model at large N . The maximum of the absolute value of the relative error is, as

expected, in ⌧/� ⇠ 0.25 and it is ⇠ 0.07. See Section 3.2.5 for more details.

– 19 –

Tauberian approximation: the two-point 
function with less than 10% error!

The Tauberian approximation is very good!

⟨ϕi(τ, x)ϕj(0,0)⟩β = δij

∞

∑
m=−∞

∫ d2k
(2π)2

e−i ⃗k⋅ ⃗x−iωmτ

ω2n + ⃗k2 + m2
th

= δij

∞

∑
m=−∞

e−mth (τ + mβ)2 + x2

(τ + mβ )2 + x2

[Sachdev, Ye 1992]



Numerical 
Approach
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1. Input: zero Temperature spectrum and Output:  &  .  

2. Truncate the sum + improved Tauberian asymptotic: 

3.    Numerically minimize with “random” coefficients the square of the sum rules.

aΔ ci

Numerical method
 Inspired by  [Gliozzi 2013] [Poland, Prilepina, Tadić’ 2023] [W. Li 2023]

min ∑
ℓ≤ℓmax

rℓ f 2(ℓ) Random coefficients

20

f(ℓ) = ∑
Δ<Δ̂

aΔ F(Δ, ℓ) + ∑
Δ>Δ̂

aT
Δ F(Δ, ℓ)

aT
Δ ∼ Δ2Δϕ−1

Γ(2Δϕ) δΔ (1 + c
Δ + …)

Light operators

Heavy operators: 

Tauberian

Light

sector

Heavy

sector

O1

O2

O3

O4

O5

O6

O7

O8

�

a�

b�0

Figure 4: Schematic depiction of the expected behavior of the OPE coe�cients a�. The

cuto↵ conformal dimension b� is represented by a green square and dashed line, and it

divides the set of all the operators in the OPE �⇥� into two sectors. In the “light sector”,

represented in blue, we have a finite number of operators with � < b�, and the coe�cients

a� are allowed to be both positive and negative. In the “heavy sector”, represented in red,

we have an infinite number of operators with � > b�; in this work, it is argued that the

sign of the coe�cients a� is always the same (positive in the picture). An OPE spectrum

with a behavior similar to this pictorial representation ensures that the Tauberian theorem

holds. As a concrete example, a quantitative plot of the OPE spectrum was produced for

the O(N) model at large N (see Fig. 7b).

Then if a� is not going to zero, there will be a cuto↵ b� such that the correction O
⇣
1/b�

⌘

becomes negligible compared to ab�. As a consequence, all the heavy contributions a�

(� > b�) share the same sign. This conclusion can be explicitly checked and it is correct

in all the known examples, up to our knowledge. In particular, apart from the free scalar

theories and the two-dimensional theories discussed in this work, holographic computations

reproduce the correct behavior. The latter computations were done by considering the

geodesic approximation of a two-point function of heavy operators in [43]. Furthermore, as

a check, we also considered the three-dimensional O(N) model at large N : the two-point

function is known [1], and the results and details are provided in Section 3.2.5.

Let us stress that this does not imply the positivity of the OPE coe�cients a�, but rather

that all the OPE coe�cients of the operators in the heavy sector share the same sign.

They can be all negative or all positive, and this does not represent an obstacle to the

derivation of the Tauberian theorem (just by multiplying by a sign factor it is possible

to have a density bounded from below). In our exploration, we also checked non-unitary

models such as the Lee-Yang model in two-spacetime dimensions. This is one of the cases

in which the coe�cients corresponding to heavy operators are all negative. This was

expected since the left side of equation (2.9) is negative for any ` 2 2N+1 (recall that the

conformal dimension of the Virasoro primary field is � = �2/5). This could suggest that

the positivity of the heavy dimensional coe�cients depends on the unitarity of the theory.

– 16 –



4d Free theory  
with Δϕ = 1
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Figure 4.3: Left panel (a): Contribution of the stress-energy tensor to the two-point
function of fundamental scalars in the free theory, for different approximations of the
heavy operator tail. Right panel (b): Numerical versus analytical predictions in the
free scalar theory. The operator �2 (� = 2) contributes to the two-point function as a
constant and is therefore not constrained by the KMS condition.

As noted above, the non-vanishing thermal one-point functions correspond to the op-
erators 1, T µ⌫ , T µ⌫T ⇢�, . . . in the vacuum module. These operators have conformal
dimensions � 2 2N, with �  J , and their one-point functions are proportional to the
central charge.

The corrections to the Tauberian approximation can also be predicted, since the confor-
mal dimensions are integer-valued. We perform the same analysis as in the free scalar
case, and present the comparison between analytical and numerical results in Fig. 4.4.

This analysis can in principle be extended to any two-point function of primary fields
in two-dimensional conformal field theories. We focus here on the 2d Ising model to
provide a concrete and physically relevant example.

4.5 Analytic bootstrap

At zero temperature, considerable effort has been devoted to analytical approaches to
the bootstrap of correlation functions in CFTs (see for instance [110, 156, 177–180]). In
the same spirit, we now explore possible analytical strategies for the bootstrap at finite
temperature. In this Section we will make use of analytical properties of thermal two-
point functions encoded in the inversion formula and the dispersion relation presented
in 3.3 to construct an analytical bootstrap problem at finite temperature.
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dimensions � 2 2N, with �  J , and their one-point functions are proportional to the
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The corrections to the Tauberian approximation can also be predicted, since the confor-
mal dimensions are integer-valued. We perform the same analysis as in the free scalar
case, and present the comparison between analytical and numerical results in Fig. 4.4.

This analysis can in principle be extended to any two-point function of primary fields
in two-dimensional conformal field theories. We focus here on the 2d Ising model to
provide a concrete and physically relevant example.

4.5 Analytic bootstrap

At zero temperature, considerable effort has been devoted to analytical approaches to
the bootstrap of correlation functions in CFTs (see for instance [110, 156, 177–180]). In
the same spirit, we now explore possible analytical strategies for the bootstrap at finite
temperature. In this Section we will make use of analytical properties of thermal two-
point functions encoded in the inversion formula and the dispersion relation presented
in 3.3 to construct an analytical bootstrap problem at finite temperature.
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The systematic error 
reduces as we add more 

corrections to the 
Tauberian approximation. 



2d Ising 
⟨σσ⟩β
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Figure 4.4: Left panel (a): Contribution of the stress-energy tensor to the two-point
function of the lightest scalar in the 2d Ising model, for different approximations of the
heavy operator tail. Right panel (b): Numerical versus analytical predictions in the
2d Ising model.

4.6 A formula for thermal correlators

We begin by considering the special kinematical configuration in which the two opera-
tors lie on the same thermal circle.12

4.6.1 The complex-time plane

Let us consider a thermal two-point function in the zero spatial direction limit. It
becomes a function g(⌧) of the coordinate ⌧ along the thermal circle. By complexifying
the ⌧ coordinate, we promote the correlator to a function of ⇠ = ⌧ + it in the complex
plane. The analytic structure of f(⇠) is strongly constrained by the KMS condition:
the function must have simple poles on the real axis at

⇠ = n� , n 2 Z . (4.6.1)

We cannot exclude a priori the presence of branch cuts connected to each of these
poles. If present, KMS invariance requires them to be vertical and all aligned with
respect to the real axis.

In the ⇠ plane, the two-point function can be written using a dispersion relation, i.e.,

12I thank Dalimil Mazac for interesting comments and suggestions regarding this section.
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We begin by considering the special kinematical configuration in which the two opera-
tors lie on the same thermal circle.12

4.6.1 The complex-time plane

Let us consider a thermal two-point function in the zero spatial direction limit. It
becomes a function g(⌧) of the coordinate ⌧ along the thermal circle. By complexifying
the ⌧ coordinate, we promote the correlator to a function of ⇠ = ⌧ + it in the complex
plane. The analytic structure of f(⇠) is strongly constrained by the KMS condition:
the function must have simple poles on the real axis at

⇠ = n� , n 2 Z . (4.6.1)

We cannot exclude a priori the presence of branch cuts connected to each of these
poles. If present, KMS invariance requires them to be vertical and all aligned with
respect to the real axis.

In the ⇠ plane, the two-point function can be written using a dispersion relation, i.e.,

12I thank Dalimil Mazac for interesting comments and suggestions regarding this section.
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3d Ising ⟨σσ⟩β
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Thermal OPE coefficients in the critical  Ising model3d
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MC (Phys. Rev. E 79 (2009) 041142)

Previous result (JHEP 12 (2019) 072)

(a) Thermal OPE data for h��i� compared
to [58] and Monte Carlo results [64, 202].
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(b) Comparison of h�(⌧, 0)�(0, 0)i� and
h�(� � ⌧, 0)�(0, 0)i�.

Figure 6.3: Left (a): Thermal OPE coefficients. Right (b): KMS condition check:
the relative discrepancy is ⇠ 10

�3.

O This work ([4]) MC [64, 202] PR [58]

✏ 0.75(15) 0.711(3) 0.672(74)

Tµ⌫ 1.97(7) 2.092(13) 1.96(2)

✏0 0.19(6) 0.17(2) 0.17(2)

Table 6.3: Thermal OPE coefficients a� for light operators in the 3d Ising model,
compared with Monte Carlo (MC) and previous results (PR). The value of the Tauberian
correction is c1 ⇠ �0.065, with negligible error.

A more quantitative comparison of OPE coefficients is given in Table 6.3.

All results are consistent with previous findings, with the exception of the stress-energy
tensor coefficient, which shows a mild discrepancy with Monte Carlo results.

Using the relation (4.1.8), we can convert aT into a free energy density estimate. Our
results, compared with MC values, are:

fN=2 = �0.275(12)

�3
, fN=3 = �0.393(17)

�3
. (6.3.3)
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g(τ) = τ−2Δϕ ∑
Δ

aΔ
βΔ τΔ

The failure of KMS is 
only of order 10-3!

∂ℓ

∂τℓ [g ( β
2 + τ) − g ( β

2 − τ)]
τ=0

= 0

Each plot takes a couple of  
minutes on a laptop!

Keeping only the first 3 light 
 operators and seven derivatives

24

Thermal OPE coefficients in the critical  Ising model3d
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Figure 6.3: Left (a): Thermal OPE coefficients. Right (b): KMS condition check:
the relative discrepancy is ⇠ 10

�3.

O This work ([4]) MC [64, 202] PR [58]

✏ 0.75(15) 0.711(3) 0.672(74)

Tµ⌫ 1.97(7) 2.092(13) 1.96(2)

✏0 0.19(6) 0.17(2) 0.17(2)

Table 6.3: Thermal OPE coefficients a� for light operators in the 3d Ising model,
compared with Monte Carlo (MC) and previous results (PR). The value of the Tauberian
correction is c1 ⇠ �0.065, with negligible error.

A more quantitative comparison of OPE coefficients is given in Table 6.3.

All results are consistent with previous findings, with the exception of the stress-energy
tensor coefficient, which shows a mild discrepancy with Monte Carlo results.

Using the relation (4.1.8), we can convert aT into a free energy density estimate. Our
results, compared with MC values, are:

fN=2 = �0.275(12)

�3
, fN=3 = �0.393(17)

�3
. (6.3.3)
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Figure 6.4: Thermal OPE coefficients for the lightest operators in the OPE spectrum
of the O(2) and O(3) models. Points without error bars correspond to Tauberian pre-
dictions.

Using the relation in Eq. (4.1.8), we convert the values of aT into estimates for the free
energy density. Our results, compared to Monte Carlo simulations, are:

fBoot. = �0.143(5)

�3
, fMC = �0.1526(16)

�3
. (6.4.3)

Interestingly, the large N prediction is given by

f

N
= � 2

5⇡

⇣(3)

�3
+O

✓
1

N

◆
. (6.4.4)

Somewhat unexpectedly, this result lies closer to the N = 1 case than to N = 2 or
N = 3. This behavior can arise if the 1/N corrections are large and do not have a fixed
sign. In fact, this is known to be the case [50], and has been further verified through
Monte Carlo simulations [203].

6.5 The free energy in "-expansion for N = 1, 2, 3

One of the most physically relevant observables we can compute is the free energy
density of a system. As shown in equation (4.1.8), the free energy density is expressed
in terms of the coefficient aT . In this section, we investigate how this quantity evolves
in the range 3  d < 4.

In d = 4, the O(N) models describe a set of N free, non-interacting scalar fields.
Therefore, the free energy density is simply N times the free energy of a single free
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Figure 6.4: Thermal OPE coefficients for the lightest operators in the OPE spectrum
of the O(2) and O(3) models. Points without error bars correspond to Tauberian pre-
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Using the relation in Eq. (4.1.8), we convert the values of aT into estimates for the free
energy density. Our results, compared to Monte Carlo simulations, are:

fBoot. = �0.143(5)

�3
, fMC = �0.1526(16)

�3
. (6.4.3)

Interestingly, the large N prediction is given by

f

N
= � 2

5⇡

⇣(3)

�3
+O

✓
1

N

◆
. (6.4.4)

Somewhat unexpectedly, this result lies closer to the N = 1 case than to N = 2 or
N = 3. This behavior can arise if the 1/N corrections are large and do not have a fixed
sign. In fact, this is known to be the case [50], and has been further verified through
Monte Carlo simulations [203].

6.5 The free energy in "-expansion for N = 1, 2, 3

One of the most physically relevant observables we can compute is the free energy
density of a system. As shown in equation (4.1.8), the free energy density is expressed
in terms of the coefficient aT . In this section, we investigate how this quantity evolves
in the range 3  d < 4.

In d = 4, the O(N) models describe a set of N free, non-interacting scalar fields.
Therefore, the free energy density is simply N times the free energy of a single free
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ε = 4 − d

Figure 6.5: Free energy density of the critical O(N) models for N = 1, 2, 3 in 3 
d  4 (i.e., 0  "  1), computed using the "-expansion.

These findings demonstrate the importance of accurately determining the central charge
across dimensions. The bootstrap approach in d = 3 provides a reliable benchmark
against which "-expansion results can be compared.

6.6 Analytical bootstrap: O(N) critical model in "-expansion

In this section, we demonstrate the validity of the procedures outlined in Section 4.5
in concrete, physically relevant examples. In particular, we focus on the free theory in
d = 4 and on the critical O(N) model at leading order in the "-expansion.

O(N) model at criticality in "-expansion

It is known that the operator product expansion (OPE) between fundamental scalars
in the O(N) model, to first order in ", takes the schematic form

�⇥ � = [1] + [��]0,J + [��]1,J . (6.6.1)

The operators [��]1,J correspond classically to � @J⇤�. At the free point (d = 4), these
operators are null states due to the equations of motion. However, in the interacting
theory at d = 4� ", the equation of motion reads

⇤� ⇠ ��3 ⇠ " �3 , (6.6.2)

implying that [��]1,J ⇠ " �@J�3 and hence are present at leading order in ".
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Analytic 
Approach
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[2506.06422  Barrat, Bozkurt, Marchetto, Miscioscia, EP]
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Analytic bootstrap

Large spin expansion 

Inversion formula 

Dispersion Relation

[Fitzpatrick,Kaplan,Poland,Simmons-Duffin 2012] 
[Komargodski, Zhiboedov 2012]

[Caron-Huot 2017]

[Carmi, Caron-Huot 2019]

Zero Temperature

Tauberian approximation 

Applied to 3d Ising 

Proposed but never used

[Iliesiu, Koloğlu, Mahajan, Perlmutter, 
Simmons-Duffin 2018]

Thermal

[Alday, Koloğlu, Zhiboedov 2020]

[Marchetto, Miscioscia, EP 2023]
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Analytic structure
The analytic structure of the thermal 2pt function was already in

z = τ + ix = rw

z̄ = τ − ix = rw−1

[Iliesiu, Koloğlu, Mahajan, Perlmutter, Simmons-Duffin 2018]

We want to learn how to reconstruct the 2pt functions from it.
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 Dispersion Relation

[Alday, Koloğlu, Zhiboedov 2020]

The thermal dispersion relation 
was written in:

But never tested or used. We put it to the use  
combining it with OPE decomposition!

gDR(r, w) = ∮C0

dw′ 

2πi
g(r, w′ )
w′ − w

= ∫
r

0

dw′ 

πi
w2(1 − w′ )(1 + w′ )(1 + w′ 2)

w′ (w′ − w)(w′ + w)(1 − ww′ )(1 + ww′ ) Disc g(r, w′ )

 The Kernel ⇒ K(w, w′ )
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4d Free theory
We can compute the discontinuity of the two point function

fΔ,J(z, z̄) = ((1 − z)(1 − z̄))
Δ
2 −Δϕ C(ν)

J ( z + z̄
2 zz̄ )

For  and  only the identity operator contributes to the discontinuity.Δϕ = 1 d = 4

Disc [1] = Disc ((1 − z)(1 − z̄))−Δϕ = − 2i sin(πΔϕ)((1 − z)(z̄ − 1))−Δϕ Θ(z̄ − 1)

g(z, z̄) = ∑
𝒪

a𝒪
βΔ fΔ,J(z, z̄)

block by block in the OPE expansion: i.e. Disc[g(z, z̄)] = ∑
𝒪

a𝒪
βΔ Disc[ fΔ,J(z, z̄)]
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Naive Free theory

This result has three problems:

 It is not KMS invariant.

 After block expansion: incorrect ’s.

 The identity contribution is missing.

a𝒪

gDR(z, z̄) = ∫
r

0
K(w, w′ ) Disc [1] = 1

(1 − z)Δϕ(1 − z̄)Δϕ
+ 1

(1 + z)Δϕ(1 + z̄)Δϕ

Doing the integral we get:
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Correct Free theory

 First attempt: add “arcs” and a “KMS compensator”.


 More elegant: make the DR KMS invariant to start with.

We found two ways of fixing all those problems:

Inspired by [Dalimil Mazáč 2018]

Both give the same result. Just saw the second one today.
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KMS Dispersion Relation 

Making the DR KMS invariant from the beginning:

gKMS DR(z, z̄) = 1
2 ∑

m∈ℤ
gDR(z − m, z̄ − m)

 This is automatically KMS invariant.


 Directly gives the correct thermal OPE coefficients.


 The identity contribution is included, no arcs needed.

Inspired by [Dalimil Mazáč 2018]
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O(N) model in ε-expansion

Now two operators contribute to the discontinuity:

ϕ × ϕ = 1 + ϕ2

This is because the conformal dimension of  is not longer integerϕ2

And all the higher operators have anomalous dimensions of order .


So to this order they do not contribute to the discontinuity.

ϵ2

Δϕ2 = 2 + ϵγϕ2
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We have two new contributions at order :ϵ

 One from expanding the identity contribution around Δϕ = 1 − ϵ
2

 And one from the anomalous dimension of ϕ2

O(N) model in ε-expansion

gDR(z, z̄) = ∫
r

0
K(w, w′ ) Disc [1] = 1

(1 − z)Δϕ(1 − z̄)Δϕ
+ 1

(1 + z)Δϕ(1 + z̄)Δϕ

Disc [ϕ2] = − γϕ2
iπz(z − zz)

z − 1 Θ(z − 1)



Operator O aO (Exact) DR LIF

1 1 0 0

[��]0,J�2 �2⇣ 0(2 + J)� 1
J a

(0)
�2 ��2⇣(J) � 1

J a
(0)
�2 ��2 � 1

J a
(0)
�2 ��2

[��]1,J
1

J+2a
(0)
�2 ��2⇣(2 + J) 1

J+2a
(0)
�2 ��2

1
J+2a

(0)
�2 ��2

Table 6.6: Thermal OPE coefficients in the � ⇥ � OPE to leading order in ". We
compare results from exact block decomposition, the dispersion relation (DR), and the
Lorentzian inversion formula (LIF). We do not consider the operator �2, since inversion
formula gives divergent results and its contribution is surely in the arcs of the dispersion
relation. Only even spin operators contribute, due to symmetry.

Imposing KMS The first method we propose to complete the correlator computed
from the dispersion relation is to impose KMS symmetry. For simplicity, we work order-
by-order in the "-expansion. Furthermore, we subtract the free theory contribution:

g̃(z, z) = g(z, z)� gfree(z, z) , (6.6.15)

where gfree is the free scalar two-point function in d = 4� ". Since both g and gfree are
KMS invariant, the difference g̃ also preserves KMS.

At first order in ", g̃ is proportional to ��2 . Thus, we only need to impose KMS on
this contribution. The identity operator and �2 contribute from the arc term. While
the scalar [��]1,0 would also naively contribute from the arc, we will show its arc
contribution vanishes.

We make the ansatz:

ã[��]0,J = � 1

J
a(0)�2 ��2

 
1 +

1X

n=1

c̃n
nJ

!
, ã[��]1,J =

1

J + 2
a(0)�2 ��2

 
1 +

1X

n=1

d̃n
nJ

!
,

(6.6.16)
where ã refers to the thermal OPE coefficients in g̃. The coefficients c̃n, d̃n are numeri-
cally determined by imposing KMS. Resumming the corrections leads to the contribu-
tion of the compensator:

g̃(n)comp(z, z) = a(0)�2 ��2 c̃n
z log

⇣
1� z2

n2

⌘
� z log

⇣
1� z2

n2

⌘

2(z � z)

+ a(0)�2 ��2 d̃n
n2
h
z log

⇣
1� z2

n2

⌘
� z log

⇣
1� z2

n2

⌘
+ zz(z � z)

i

2(z � z)
. (6.6.17)
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With both methods we get: 

 We check our results against Feynman diagram computation.

 A new tower of operators .ϕ □ ∂Jϕ ∝ ϵϕ∂Jϕ3

O(N) model in ε-expansion

KMS	DR



More results with DR

 2D theories


 3D O(N) large N


 Relations with momentum space. [Andrea Manenti 2019]

Infinite number of contributions to discontinuity}
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Complex τ plane DR

g(τ) = ∑
Δ

aΔ
βΔ (ζH (2Δϕ − Δ, τ

β ) + ζH (2Δϕ − Δ,1 − τ
β )) + κ

g(τ) =
∞

∑
m=−∞

1
2πi ∫

0

−i∞
dτ′ 

Disc g(τ′ )
τ′ − τ + m

β

+ garcs

Disc g(τ) = ∑
Δ

aΔ Disc τΔ−2Δϕ

⌧ ⌧ 0
⌧

Figure 1: Left panel: Analytic structure in the complex ⌧ -plane of the thermal two-

point function at zero spatial separation, g(⌧). Right panel: The contours considered to

compute the correlation function in ⌧ via a dispersion relation [EM: add the arrows on the

branch cuts contours as well].fig:collanalytic

2.1 Two-point functions at zero spatial separation
sec:complextauDR

We consider the thermal two-point function in the limit of vanishing spatial separation,

denoted by g(⌧). This setup corresponds to studying the correlator of two identical scalars

placed on the same thermal circle in the thermal geometry Rd�1
⇥ S1

�
. This special limit

introduces interesting features: for example, it always ensures the convergence of the ther-

mal OPE. The function g(⌧) depends solely on the coordinate ⌧ along the thermal circle,

making the problem akin to a one-dimensional one.

Analytic structure in the ⌧ -plane. We can analytically continue g(⌧), making the

correlator a function of the complex variable ⌧ 2 C. The analytic structure of g(⌧) is

strongly constrained by the KMS condition: the function has simple poles on the real axis

located at

⌧ = n� , n 2 Z . (2.5)

The information encoded in these poles does not exhaust the analytic structure of the

correlator, since branch cuts might be present.7 To determine this, we focus on the region

|⌧ | < �, where we can expand the two-point function in an OPE, which takes the form

g(⌧) =
X

�

a�
⌧��2��

��
, (2.6) eq:OPEintau

where � are the conformal dimensions of the operators appearing in the OPE of � ⇥ �.

Since the correlator is considered only at zero spatial separation, it is e↵ectively a one-

dimensional correlation function (or more precisely, the restriction of a d-dimensional one

to one dimension). Therefore, the OPE is not sensitive to the spin of the operators, which

indeed does not appear in equation (2.6). This means that the coe�cients a� do not

6The term dispersion relation originates from the fact that tools like the one we explain in this section

can be used to derive, for instance, the Kramers–Kronig relations, which describe how a system absorbs

and reflects light. In our context, the use of the term dispersion relation is somewhat of a misnomer, but

it is standard in the literature.
7We are grateful to Dalimil Mazáč for interesting discussions and insights connected to this Section.

8

Obeys all bootstrap requirements (OPE, KMS, analyticity & Regge).

Computing discontinuity block by block in OPE

expansion in GFF blocks

Arcs (constant κ - iff  bounded) that can be fixed imposing clustering.g(τ)

ζH(s, a) =
∞

∑
n=0

1
(n + a)s

constant



Improving Tauberian

aΔ
Δ≫1∼ 2 Δ2Δϕ−1

Γ(2Δϕ) (1 +
Δϕ(1 − 2Δϕ)

Δ +
(Δϕ − 1)Δϕ(2Δϕ − 1)(6Δϕ − 1)

6Δ2 + …

+
aΔ1

Γ(2Δϕ)
Γ(2Δϕ − Δ1)

1
ΔΔ1 (1 +

(Δ1 − 2Δϕ + 1)(Δ1 + 2Δϕ)
2Δ + …) + …

+
aΔ2

Γ(2Δϕ)
Γ(2Δϕ − Δ2)

1
ΔΔ2 (1 +

(Δ2 − 2Δϕ + 1)(Δ2 + 2Δϕ)
2Δ + …) + …

g(τ) = ∑
Δ

aΔ(ζH(2Δϕ − Δ, τ) + ζH(2Δϕ − Δ,1 − τ)) + κExpanding

We can exactly compute corrections to Tauberian:

This allows to significantly improve our numerical method!

Identity 

first light operator 

second light operator 

Laplace transform: 

gGFF(τ)



New numerical results
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Figure 5: Two-point function h✏(⌧)✏(0)i� computed by inverting 1,✏ and Tµ⌫ and using

the dispersion relation in the complex ⇠ plane. The result is compared with Monte Carlo

simulation on a lattice 500⇥ 500⇥ 40, where the inverse temperature is therefore � = 40.fig:3dIsingee

Martin-Schwinger (KMS) condition. We showed that, in the periodic Euclidean time coor-

dinate and at zero spatial separation, any thermal two-point function can be expanded in

terms of generalized free-field correlators. The coe�cients of this expansion are given by

certain thermal OPE coe�cients. This result, explicitly presented in equation (2.24), fol-

lows from expressing the two-point function in terms of its discontinuity in the complexified

time plane.

We further investigated the dispersion relation at non-zero spatial separation introduced

in [37], and its interplay with the OPE and the KMS condition. We found that comput-

ing the discontinuity in the OPE regime captures only the leading polynomial behavior

at large spin. In contrast, non-polynomial corrections arise from contributions outside the

OPE regime, in full agreement with the structure of large-spin perturbation theory de-

scribed in [18]. Moreover, we observed that the naive result from the dispersion relation

within the OPE regime is not KMS invariant. Motivated by the complex ⌧ -plane analy-

sis, we proposed a prescription to restore KMS invariance and simultaneously reconstruct

the low-spin contributions. This involves summing over images of the dispersion relation

result, leading to what we termed a generalized method of images. We demonstrated that

this construction satisfies all thermal bootstrap axioms, except clustering, which must be

verified on a case-by-case basis. Additionally, we showed that if clustering holds, then the

solution is unique — equivalently, arc contributions vanish.

We illustrated the applicability of our method in several examples. In the case of the free

scalar theory, the generalized method of images reduces to the standard one, e↵ectively

reproducing a sum over propagators. We then studied the O(N) model in the "-expansion

and found perfect agreement with direct perturbative calculations. Finally, we tested our

results in exactly solvable strongly coupled regimes, namely the large-N limit of the O(N)

model and in two-dimensional models.

By combining analytic and numerical techniques - in particular the method proposed in [27]

- we believe that substantial progress can be made on the thermal bootstrap program.
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3d Ising



Holographic 
CFTs

43

[2510.20894 Barrat, Bozkurt, Marchetto, Miscioscia, EP]



Holographic CFTs
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 CFT on :  Black Brane in AdS


 CFT on  :  Black Hole in AdS


 Einstein gravity coupled to a scalar of mass

S1
β × ℝd−1

S1
β × Sd−1

R

m2 = Δϕ(Δϕ − d)



45 [Fitzpatrick, Huang 2019]

 The spectrum appearing in the OPE:

 Identity operator:  

 Double trace:  

 Multi-Stress-tensors: 

Δ = 0 , J = 0

Δn,J = 2Δϕ + 2n + J

Δn = dn , Jn = 0,2,…, dn/2

 The OPE coefficients:

𝑎𝑇𝜇𝜈 =
𝜋4Δ𝜙

120

𝑎𝑇𝜇𝜈𝑇𝜇𝜈
=

𝜋8Δ𝜙(7Δ4
𝜙 − 45Δ3

𝜙 + 100Δ2
𝜙 − 80Δ𝜙 + 48)

201600 (Δ𝜙 − 4)(Δ𝜙 − 3)(Δ𝜙 − 2)

𝑎𝑇𝜇𝜌𝑇 𝜈𝜌
=

𝜋8Δ𝜙(7Δ3
𝜙 − 23Δ2

𝜙 + 22Δ𝜙 + 12)
201600(Δ𝜙 − 3)(Δ𝜙 − 2)

𝑎𝑇𝜇𝜌𝑇 νσ =
𝜋8Δ𝜙(7Δ2

𝜙 + 6Δ𝜙 + 4)
201600(Δ𝜙 − 2)

Holographic CFT



Bootstrap & Holography
 Naively the discontinuity allows only:  Identity operator:  

 Multi-tensors with: 

Δ = 0
Δn ≤ 2Δϕ

from (2.20)–(2.23) with (2.35), yielding

aT =
⇡
4
��

40
, a[T 2] = aT

2
63�

4
�

� 413�
3
�

+ 672�
2
�

� 88�� + 144

126��(�� � 4)(�� � 3)(�� � 2)
, (2.41)

from which we obtain explicit results in (2.36)–(2.40). In principle one can produce the
principal part of the correlators for arbitrarily high ��, to the condition that sufficiently
many multi-stress tensor OPE coefficients are known. Note that the limit �� ! 1 in (2.34)
trivially reproduces the geodesic approximation [37] by excluding all the regularized con-
tributions.12

It can be argued from the OPE point of view that the principal contributions, being
associated with the lightest operators in the OPE, constitute the dominant component of the
holographic correlator around ⌧ ⇠ 0 and ⌧ ⇠ �. This can be tested numerically, as shown
in Section 2.4. Hence, the principal contribution can be considered a good approximation of
the full holographic two-point function. Note however that this term is clearly not complete
as it does not capture the log contributions in the OPE nor the correct asymptotic OPE
expansion at large frequency.

Regularized contributions. We now come to the analysis of the regularized contribu-
tions, encoding the dynamical information of an infinite number of multi-stress tensors:

greg(⌧) = �2

X

��2��

Res�� a�

��
g
(1,0)
GFF

✓
�� �

�

2
, ⌧

◆
. (2.42)

An exact computation can only be performed with the knowledge of an infinite number of
coefficients Res�� a�. In principle, we can compute as many OPE coefficients as we desire
from the wave equation as in [36]. However, the analytic form (or the closed form) of the
multi-stress OPE coefficients for any scaling dimension is currently unknown, to the best
of our knowledge.

It is nevertheless possible to produce an approximated resummation13, which reveals
the presence of new poles in the strip 0 < ⌧ < � in the complex ⌧ -plane and they are
depicted in Figure 3. These poles correspond precisely to the so-called bouncing singularities
in AdS [47, 55], which were first identified through the geodesic approximation. Such
singularities are unphysical for the Euclidean correlator, in the sense that a generic two-
point function should only exhibit the Matsubara poles, as discussed in Section 2.1. The
presence of the bouncing singularities implies that the contribution from the arcs is no longer
constant:14 Instead, they must cancel the poles, as explicitly shown for the asymptotic
model in [42, 43] and reviewed in Appendix C.

Since the bouncing singularities are produced by the resummation of an infinite number
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13To refine this approximation, one may replace the OPE coefficients of operators with low scaling

dimensions by their exact values as computed in [36], rather than using their large–scaling-dimension
approximations. A systematic analysis of this improvement is left for future work.

14Note that the appearance of this pole violates the analytic structure of the correlator and thus escapes
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We explicitly see the implications of (2.34): From �� � 3 the multi-stress tensor operators
start contributing with additional GFF blocks. The values of aT and a[T 2] can be read
from (2.20)–(2.23) with (2.35), yielding
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⇡
4
��

40
, a[T 2] = aT

2
63�

4
�
� 413�

3
�
+ 672�

2
�
� 88�� + 144

126��(�� � 4)(�� � 3)(�� � 2)
, (2.41)

from which we obtain explicit results in (2.36)–(2.40). In principle one can produce the
principal part of the correlators for arbitrarily high ��, to the condition that sufficiently
many multi-stress tensor OPE coefficients are known. Note that the limit �� ! 1 in (2.34)
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Figure 6: Comparison between the bootstrapped principal part of the two-point function for
�� = 3, gpr(⌧), and the boundary limit of the numerical solution of the AdS5 wave equation,
gnum(⌧). The plot below displays the relative discrepancy between gpr(⌧) and gnum(⌧) for
� = ⇡. The discrepancy is always below 1.3% for ⌧ 2 (0, �).

contribution corresponds to �� = 3, we focus on this specific example. Further details on
this computation are provided in Appendix D.

Figure 6 shows that the principal contribution to the two-point function from our
bootstrap construction and the numerical bulk solution differ by at most ⇠ 1.3%. As
argued in Appendix D, this small discrepancy can be attributed to numerical accuracy.
We expect that a better numerical estimation of the two-point function could in principle
also show the (subleading) regularized and arc contributions presented in Section 2.3. For
�� = 3, the principal contribution is composed of only two blocks: the identity and the
stress tensor blocks, as can be seen from (2.38). In Figure 7 we compare the numerical
two-point function with the identity block (left panel), and with the stress tensor block
after subtracting the identity contribution (right panel). The apparent agreement supports
the fact that the principal contributions (2.36)–(2.40) represent the dominating component
of the holographic correlators.

In Appendix D we also show the case of �� = 1 as a testing playground, since the
prediction for the associated correlator is exact.

2.5 Bulk interpretation through Witten diagrams

We now discuss an interpretation of our bootstrap results in terms of Witten diagrams. In
particular, we show a one-to-one correspondence between our expansion in GFF correlators
(regularized to their derivatives, in the case of higher multi-stress tensors contributions)

19



Witten diagrams in the Bulk
A gravitational interpretation of this result: 

Expanding the black brane metric around thermal AdS, we can 
compute the thermal correlator perturbatively in 

The Witten diagrams reproduce the GFF decomposition.

A gravitational interpretation of the result

• Can the GFF decomposition be seen from the bulk?

• Expanding the black brane metric around thermal AdS , we can compute the thermal correlator 
perturbatively in 𝜀 = 𝐿𝐴𝑑𝑆

𝛽
:

• It can be shown that Witten diagrams reproduce the GFF decomposition (up to regularization)!
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𝛽𝑑𝑛 𝑔𝐺𝐹𝐹 Δ𝜙 −
𝑑𝑛
2 , 𝜏

ε = LAdS /β



 But there is more…
 The 3pt coefficients have poles:

 We need to regularise:

1
Δϕ − n

gGFF (Δϕ − Δ
2 , τ) → 1

Δϕ + ε − n
gGFF (Δϕ + ε − Δ

2 , τ)

 OPE:  degeneracy between some d.t. and m.s. & as Δ Δϕ → n

aΔ ∼ 1
Δϕ − n

, n ∈ ℕ

These logs can be seen also from the bulk

A
Δϕ − n ( τ

β )
Δd.t.−2Δϕ

− A
Δϕ − n ( τ

β )
Δm.s.−2Δϕ

= 2A log ( τ
β ) ( τ

β )
Δm.s.−2Δϕ

[Li, Mai, Lü 2019] 



The complete answer
g(τ) = ∑

Δ<2Δϕ

aΔ
βΔ gGFF (Δϕ − Δ

2 , τ) − 2 ∑
Δ≥2Δϕ

ResΔϕ aΔ

βΔ g(1,0)
GFF (Δϕ − Δ

2 , τ) + garcs(τ)

 The first part dominates for real  and we can compute it exactly.


 The regularised part is an infinite sum and we can approximate it.


 It creates new poles on the  plane.


 They are known to be the bouncing singularities and we remove 

them using the arcs.

τ

τ

⌧

Re(⌧)

Im(⌧)

Figure 3: The regularized part of the correlator, greg(⌧), has additional poles in the complex
⌧ -plane called bouncing singularities. The analytic structure of the regularized part therefore
consists of KMS poles (colored red) and bouncing singularities (colored orange). The latter
are removed from the full correlator by adding the arc contributions.

behaviour in � = 4n, as derived in [42]:

a4n =
⇡

20
(�4)

n
n
2���3

 
4
2���

2
�
(�� � 1)

�
�
2�� +

3
2

�
!

csc(⇡��) , (2.43)

leading to the residue

�2Res�� a4n =
1

40
(�4)

��+n+1
n
2���3

 
4
���

2
�
(�� � 1)

�
�
2�� +

3
2

�
!

. (2.44)

We write explicitly the regularized contributions for the correlators with �� < 4. The
expressions for �� � 4 are easily obtainable, but we omit them for the sake of clarity:

�� = 1 : greg(⌧) = 0 , (2.45)

�� = 2 : greg(⌧) =

1X

m=�1

k2 log |m� + ⌧ |
(m� + ⌧)

4
�
2(m� + ⌧)

4
+ �

4
�

�4 (4(m� + ⌧)4 + �4)
2 , (2.46)

�� = 3 : greg(⌧) =

1X

m=�1

k3 log |�m + ⌧ |


27(�m + ⌧)

6

�3 (4(�m + ⌧)4 + �4)
4

+
16
�
32(�m + ⌧)

8
+ 31(�m + ⌧)

4
�
4
+ 11�

8
�
(�m + ⌧)

10

�3 (4(�m + ⌧)4 + �4)
4

�
, (2.47)

where
k2 = �

524288

4725
p

⇡
, k3 = �

33554432

75075
p

⇡
. (2.48)

Note that the correlator corresponding to �� = 1 reproduces the free scalar two-point
function as expected. In this framework, this can be seen as a consequence of the absence
of poles at �� = 1 in the OPE coefficients.15 The expressions for �� = 2, 3 exhibit instead

15More generally one can show that any correlator with �� = 1 in four spacetime dimensions must
satisfy the free equation of motion. Further details are provided in Appendix D, where this case is used as
a benchmark to test the numerical solution of the wave equation in AdS.

14

[Čeplak,Liu,Parnachev,Valach 2024] 
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Where we currently are
 Numerical approach to the thermal bootstrap. 


 Analytical approach (thermal Dispersion Relation).


 Application to Holographic CFTs.


 Initiated the  geometry for Holographic CFTs.


 Temporal line defects (Polyakov loops).

S1
β × Sd−1

R

52

[2407.14600 Barrat, Fiol, Marchetto, Miscioscia, EP]

In tandem}
[2510.20894 Barrat, Bozkurt, Marchetto, Miscioscia, EP]



Where are we going?
  N=4 SYM & ABJM using the spectrum from integrability.


 Apply both approaches to Polyakov loops.


 Study the  geometry. 


 Black holes, hydro and CFT data.


 Going away from criticality.

S1 × Sd−1
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Thank you!


