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Motivation

X Quantum critical points: nonzero temperature in the lab.

X Black Holes through AdS/CFT.

3 CFTs on non-trivial manifolds.



Thermal CFTs

Thermal effects are captured by placing the theory on a circle

S1x R4 =

p T
With pe.riodi(.: bloundary Conditions for the bosons Tanslations v

and anti-periodic for the fermions.

Spatial rotations v
Boosts X
Broken symmetries are not lost but Dilatations X
X

captured by broken Ward Identities. Special conformal




Thermal CFTs

Assume we know the zero temperature CFT data:

A i

and are interested in computing new finite temperature data:
the non-zero thermal one-point functions:

be
<@(x)>ﬁ — 5

for neutral scalar operators.

And more generally for all traceless symmetric tensors:

bp,

(O )y =3

(etr---etr — traces)
J



Thermal CFTs

We can still use the OPE:

0,(x) X 05(0) = Y fiap| x| 478, L x, 0" (0)
0)

But now the radius of convergence is finite: | x| < f

/ \
| & p E | |x| = \/m

J

[lliesiu, Kologlu, Mahajan, Perlmutter, Simmons-Duffin 2018]

6



Thermal 2pt functions

The two-point function of identical scalars ¢, using the OPE

(P@ NGOy = D fygolx|27247 5, Lz, (011,
O b

’ 0
(@“1""-’()6))/,7 = ﬂA;, (et1---etr —tr)

and the definition of the Gegenbauer polynomials:

(B pON,; = T e 11y (W)

J! T(w+J) d—2
Ao = b@f@qsqs 7 W), = o) v =—— |x| = Vx*+ 72
S— 2/(v),

New Finite Temperature data




Thermal crossing

Periodicity of the two-point function is captured by the [Kubo 1957]
KMS condition: [Martin,Schwinger 1959]

(D@, 0P0,0))5 = (b + f, )P(0,0)),

The OPE expression does not manifestly satisfy KMS, thus
Imposing it gives a novel nontrivial consistency condition.

Variation of KMS:

<¢ (p12 + ) ¢(0)>ﬂ = <¢ (B2 -7) ¢(0)>ﬂ [El-Showk, Papadodimas 2011]
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Plan of the talk

3 Sum rules from KMS and lesson for light operators
3k Heavy operators: asymptotic OPE density

3k A Numerical approach: Light + Heavy

3k An Analytical approach: Dispersion Relation

3k Application to Holographic CFTs



Sum Rules

[2312.13030 Marchetto, Miscioscia, EP]
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Sum rules from KMS

3k OPE expand both sides of the EI-Showk - Papadodimas formula

(12 +7,x) p0)Y = {p (B2 —1,x)H0)
(925 90), = (332 90),
3K Then further expand the result in powers of 7 and x.

3k Use the definition of Gegenbauer polynomials and the binomial theorem.

Z b@f@QbeFbﬂ,n(h’J):O £re2N+1,neN

OepXd h=A-J

1}

h =24, 1-J J h
3ty
n £ g—A¢—n+1,—J—u+1
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Sum rules from KMS

2 bofepgFeah ) =0 cemoe

— h=A-J
OEpXd New Known data
Finite Zero Temperature
Temperature

We have an infinite set of linear equations for the combinations as & b fg44

Difficulty: Thermal one-point functions not sign-definite.

Which is crucial for linear programming methods (standard numerical bootstrap).
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Sum rules from KMS

The sum rules for as o b fs4, <> ) )JT

further simplified for x = 0 17

r(28,+¢) 0 T(a-28,+1)

=Z A
r(2a,) s02r(a-28,-¢+1) rem+i

—

ay= Y azC¥(1)forfixed A
Oepxe

Operators of same A but different J cannot be distinguished because of x = 0.

Generically this does not occur, unless there is extra symmetry, like for free theory.
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KMS sum rules: test & learn

4-dim free theory O(N) model at large N
§ e T e T e e e 1.0F e ————
o :
0.8 B
® 6 3 , =
s | = 06 i
T < 04
= =
2 ol s s
e 0.2
0L, budas 0.0 :
0 10 20 30 40 50 0 5 10 15 20 25
Number of operators Number of operators

Dashed straight lines: the LHS of the sum rule (identity contribution). The RHS plot adding operators.

r(28,+¢) o T(a-28,+1)

r(2a,) ¥ r(a-28,-¢+1)

Observation: for small £ only few light operators contribute.
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Heavy
Operators




Asymptotic thermal OPE density

Consider the simplified two-point function at x = O:

TA@ 00 TA
G@DO)= 7% F g =T—2A¢[ I8 p(®) 7
0

Oepxe

via introducing the spectral density p(A) = Z O(A"— A)ay
A/



Asymptotic thermal OPE density

Using Tauberian theorems or Laplace transform the contribution of the identity:

oo ]
p(A) A g A2A¢_l
FQA,)

Keep in mind, the physical spectrum is discrete p(A) AR Z O(A"— A)ay,
A/
More correctly: average density of OPE of Heavy operators

A " ~ A->o0 A2A¢ 1
J (M)A AR 1+0(—
) [Q2Ay+ 1) A
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Ex. 3d O(N) at Iarge N

e M (t+ mﬂ)2 +x?

00 de e—th iw,,T 00
0,0 0::
<¢ (T x)¢( ))/j 1y m; J (271,)2 wz + k2 + m2 :Z_ /(T + m/)’)z + x_2 205 X
[Sachdev, Ye 1992] 4y A2° 2 e —t
<§ 1.95 X
1 1 e A2A1/ﬁl

Ad)- =—+0\|— au A2 SA voq

i 2 N ]_‘(2 A{/)) x Exact data

i - Tauberian prediction

A 24+ 0 :

o N 800 5 10 15 20 25

A-2
. 25
2A —1 A-2A
deA A ¢ (ﬂ - T) ¢ T/ﬂ < 1 exact two-point function
0 F(ZA(/)) ﬂA 20 — 1= 3 Taub. approx.

0)),; ~ <
<¢(T)¢( )>ﬂ e AZA‘f’_l TA_ZA‘/’ /S — T < 3 Taub. approx.
dA T/~ 1 <
0 ['(2A) pA ‘% 15
. . , S
Tauberian approximation: the two-point 0

function with less than 10% error!

The Tauberian approximation is very good!

18

0.0 0.2 0.4 0.6 0.8 1.0

7/3



Numerical
Approach

[2411.00978 Barrat, Marchetto, Miscioscia, EP]
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Numerical method

Inspired by [Gliozzi 2013] [Poland, Prilepina, Tadi¢’ 2023] [W. Li 2023]
1. Input: zero Temperature spectrum and Output: a, & ¢; .

2. Truncate the sum + improved Tauberian asymptotic:

an

Light E Heavy
sector iscctor i (28 f(f) — Z aA F(A, f) _I_ Z ag F(A, f)
v @55 % 7 A<A A>A Heavy operators:
o LA _ Tauberian
7 ; SRS Light operators A2,
0 I I A " C
i L F al ~ SA1+—+...
0 8, 5 F(2A¢) A

3. Numerically minimize with “random” coefficients the square of the sum rules.

min [ ) 7 fX)

l’ﬂs l’ﬂmax
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40

/'o
/'ox’
30| e
«"O/’
/0/'
4d Free theory .2 -
| ’/0’
with A, =1 -
10t
-+ Tauberian approx.
O Thermal bootstrap
ol 4 Exact results
0 10 15 20
6.515 A
6.505/ T L - ¢ * ° . ]
. | R . The systematic error
§ 6.500; reduces as we add more
6.495, corrections to the
) et Tauberian approximation.
0 10 15 20

Iterations




a2

1.0 Q
-+ Tauberian approx.
O Thermal bootstrap
Exact results
0.8}
= 0.6+
2d Ising
0.4 o
(60 >ﬁ
0.2/ R
""" OOO
0.0t . ‘ ‘
0 2 4 6 8 10
A
0.4116¢} _ 2 Af%<1+ﬁ+L{+i+ : ;l:/zrmgalbootstrap
0.4114| ) — =
0.4112¢
04110 oot e The systematic error
0.4108 reduces as we add more
CA e : . : corrections to the
0.4104] ° * . ' * . i . .
oo . Tauberian approximation.
0 5 10 15 20

Iterations




0.0

3d Ising (60)

2.0¢
1.5}
1.07

0.5¢

§ ™

O Thermal bootstrap

A MC (Phys. Rev. E 79 (2009) 041142)

i Previous result (JHEP 12 (2019) 072)
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0g(7)/8(7)

20

8(7)
S50 NG e gB—1)
0.0 0.2 0.4 0.6 0.8 1.0 The failure of KMS is
-107° | only of order 107!

Keeping only the first 3 light
operators and seven derivatives

Each plot takes a couple of
minutes on a laptop!
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The 3d O(2) XY model

2.0¢

1.57

1.07

0.5¢

0.0

25
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The 3d O(3) Heisenberg model

2.0
o T
1.5
1.0
2
p *
0.5
4
3 ¥
0.0 : ‘
2 4 6 8 1C



Free energy across dimensions

0 |,
(o} (o] le) o
N=1 oooooooO00000%
-0.2¢ .
o o
o o 4 6 & o
.S
~ —0.3
My o % o —
N=3 ° o o o
© © 0o 0 6 0 0 o o © %
-0.4; * Thermal bootstrap (3d bootstrap)
O Thermal bootstrap (e-expansion)
A MC (Phys. Rev. E 79 (2009) 041142)
-0.5+ Previous result (JHEP 12 (2019) 072)
0.0 0.2 0.4 0.6 0.8 1.0
e=4-d Interacti
nteracting
Free ad critical 3d
eory theory

[2505.20403 Bulgarelli,Caselle,Nada,Panero] new MC: systematic shift but qualitative trend is the same
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Analytic
Approach

[2506.06422 Barrat, Bozkurt, Marchetto, Miscioscia, EP]
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Analytic bootstrap

Thermal

\

Tauberian approximation

[Marchetto, Miscioscia, EP 2023]

Zero Temperature \

Large spin expansion

[Fitzpatrick,Kaplan,Poland,Simmons-Duffin 2012]
[Komargodski, Zhiboedov 2012]

|
|

Inversion formula

[Caron-Huot 2017]

Applied to 3d Ising

[lliesiu, Kologlu, Mahajan, Perimutter,
Simmons-Duffin 2018]

. e I

Dispersion Relation
[Carmi, Caron-Huot 2019]

Proposed but never used
[Alday, Kologlu, Zhiboedov 2020]
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Analytic structure

The analytic structure of the thermal 2pt function was already in

[lliesiu, Kologlu, Mahajan, Perlmutter, Simmons-Duffin 2018]

I [

=T+ I1x=rw

—1/r —r r 1/r 1

I=T—IX=7TW_

We want to learn how to reconstruct the 2pt functions from it.
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Dispersion Relation

A

[w”
The thermal dispersion relation w

was written in: Co

[Alday, Kologlu, Zhiboedov 2020] WW

dw’ ] ’ rd / 21_ (1 (1 2
wg(rW):J w w1 =w)(1 +w)(1 +w?) Disc ¢(r, w')

2xi W —w

gDR(r’ W) — 4;
Co

o i ww' =w)(w' +w)(l —ww’)(1 +ww’)

= The Kernel K(w, w’)

But never tested or used. We put it to the use
combining it with OPE decomposition!
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4d Free theory

We can compute the discontinuity of the two point function

_ %) _
g(z,2) = Z ﬂ_AfA,J(Z’ 2)
o a
block by block in the OPE expansion: i.e. Disc[g(z,2)] = 2 ﬁ—iDisc[ a2, 2)]
%

A_

A Z+2Z
D) =(1-z)(1-2)% *CW
fasz2) = ((1 =21 = 2)) 5 <2 N )

For A¢ = 1 and d = 4 only the identity operator contributes to the discontinuity.

Disc[1] = Disc (1 — 2)(1 —2)) " = = 2isin(xA ) ((1 - E = 1)) " O@E - 1)
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Naive Free theory

Doing the integral we get:

r

1

8pr(2,2) = ‘A K(w,w")Disc[1] =

0 (1 =2)%(1 -

This result has three problems:

7)%

3k It is not KMS invariant.
3 After block expansion: incorrect a’s.

3 The identity contribution is missing.

33

* (1 4+ 2)29(1 + 2)%

O ap exact | from DR | from LIF
1 1 0 0
[¢0lo,s | 2¢(2+ J) 2 2




Correct Free theory

We found two ways of fixing all those problems:

3 First attempt: add “arcs” and a “KMS compensator”.

3 More elegant: make the DR KMS invariant to start with.
Inspired by [Dalimil Mazac 2018]

Both give the same result. Just saw the second one today.
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KMS Dispersion Relation

Inspired by [Dalimil Mazac 2018]

Making the DR KMS invariant from the beginning:

i, &) = E , I—m,g—m
8KMS DR y 8DR

me’zZ

3 This is automatically KMS invariant.
3 Directly gives the correct thermal OPE coefficients.

3 The identity contribution is included, no arcs needed.
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O(N) model in ge-expansion

Now two operators contribute to the discontinuity:

PXPp=1+¢*

This is because the conformal dimension of qbz IS not longer integer
A¢2 =2 + €}/¢2

And all the higher operators have anomalous dimensions of order e’.

So to this order they do not contribute to the discontinuity.
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O(N) model in ge-expansion

We have two new contributions at order ¢:

€
3%k One from expanding the identity contribution around A¢ =1- 5

r 1 1
7) = K ! D 1] =
gpr(Z,2) [o (w,w) Disc 1] (1 = 2)2¢(1 = 7)) i (1 4+ 2)%(1 + )%

3 And one from the anomalous dimension of gbz

Disc [¢?] = — Y2 inzZ(Z_—lzZ) OZ-1)
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O(N) model in ge-expansion

With both methods we get:

Operator O ao KMS DR DR LIF
1 1 0 0
[9Plo,7>2 —2¢'(2+J) - %afbg)%zg(J) —%afboz)%ﬁ —%ag)z)%ﬂ
091, J%QCL;%)%MC (2+J) J%Qaf,g)%b? J%Qag)z)%?

3k A new tower of operators ¢ []0’¢p x epd’p°.

3 We check our results against Feynman diagram computation.
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More results with DR

Xk 2D theories

Infinite number of contributions to discontinuity

2%k 3D O(N) large N

3 Relations with momentum space.  [Andrea Manenti 2019]
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Complex T plane DR

7_

o | 0 Disc g(7')
E| EH |E| E 0" 2. S BN

m=—o0
constant

Computing discontinuity block by block in OPE Disc g(7) = Z a, Disc 78728
A

2(7) = ZZ—i(gH <2A¢ _ A,%) + ¢ <2A¢ ALl —%>) 1K

A

expansion in GFF blocks

Obeys all bootstrap requirements (OPE, KMS, analyticity & Regge).

Arcs (constant k - iff g(7) bounded) that can be fixed imposing clustering.



Improving Tauberian

Expanding g0 =y aA<CH(2A¢ — A+ 20, — Al - T)) +x
A

8Grr(7)

We can exactly compute corrections to Tauberian:

Laplace transform:

+ ... |dentity

spt L A (1 B1-28)) (8= DA, - (6, — 1)
A 6A2

first light operator

L alCA) 1 (A -28,4 DA +28)
[(2A, — Ap) A2 2A

. ayL(2A,) 1 1+(A2—2A¢+1)(A2+2A¢) .
[(2A;— Ay A 2A

> + ] second light operator

This allows to significantly improve our numerical method!



New numerical results

|
| /
\ —;@ /
N -

| \ |
10 20

(e(De(0)),

3d Ising



Holographic
CFTs

[2510.20894 Barrat, Bozkurt, Marchetto, Miscioscia, EP]

43



Holographic CFTs

%k CFT on S! x R4~!: Black Brane in AdS
p

%k CFTon S! x S94-1. Black Hole in AdS
p R

3k Einstein gravity coupled to a scalar of mass

m* = Ay(A, —d)

44



Holographic CFT

3 The spectrum appearing in the OPE:
% |dentity operator: A =0,J =0
% Double trace: A, ; =24, +2n+J

% Multi-Stress-tensors: A, =dn, J, =0,2,...,dn/2

3%k The OPE coefficients:
4
T A, o nPAH(TAY — 23A5 +22A 5+ 12)
™=120 oty 201600(A, — 3)(Ay — 2)

P AH(TAG + 64, +4) 7PA4(TAG — 45A75 + 100A7 — 80A ; + 48)

a upvo — a y7A% =
et 201600(A , — 2) S 201600 (A, — 4) (A, — 3) (A, — 2)
¢ ¢ ¢ ¢

45 [Fitzpatrick, Huang 2019]



Bootstrap & Holography

%k Naively the discontinuity allows only: Identity operator: A = (

A¢:13g()_— ( )

A¢— 8()_—4 4<

p
gl = cb (n_) ( ) + 26 cos <27m> +33| + ﬂ—zcscz <ﬂ>
60ﬂ6 p p p° p
[ 6 27m' =

% Multi-tensors with: A, < 24,

7Z'T
CSC8

Compare with OPE coefficients of [Fitzpatrick, Huang 2019]

A ,63A5 — 413A7 + 672A7 — 884, + 144

~ a0 0 YmMIT 126A5(Ag — 4)(Ag — 3)(Ay — 2)




Compare with numerics

Solving the wave —
equation in the bulk i

for A¢ =3

The discrepancy is 0
always below 1.3% = 12

2 1.0

0.
8.0 0.5 1.0 1.5 2.0 2.5 3.0



Witten diagrams in the Bulk

A gravitational interpretation of this result:

Expanding the black brane metric around thermal AdS, we can
compute the thermal correlator perturbatively in e = L,y5/p

dn
(¢(T)¢(O)>ﬁ = @) ; @ @ @ ﬁdn gGFF <A¢> —7»T>

ThermalAdS Graviton modes

The Witten diagrams reproduce the GFF decomposition.



But there I1s more...

!
3k The 3pt coefficients have poles: @ ~7-—, n€n

X We need to regularise:

1 A A 1 A+ A
——, 7] - £E——,T
Ad)—n 8GFF o > A¢+8_ngGFF ¢ )

3 OPE: A degeneracy between some d.t. and m.s. & as A¢ —n

A <1> Ay 24, B A <1> A, =24, ol <£> <1> A, =28,
Ad’ —n \p A¢ —n \p - © p p

% These logs can be seen also from the bulk  [Li, Mai, Li 2019]




The complete answer

Resy . a
aA A¢ A A
g(T) = 2 ﬂ_AgGFF ( ) 2 Z A g((;lF(]? <A¢ - E’ T> + garcs(T)

A<2A, A22A,

K The first part dominates for real T and we can compute it exactly.

3 The reqgularised part is an infinite sum and we can approximate it.
Im(7)

A —

K It creates new poles on the 7 plane.

Re(T)

3 They are known to be the bouncing singularities and we remove

them using the arcs. [Ceplak,Liu,Parnachev,Valach 2024]



Conclusions



Where we currently are

3k Numerical approach to the thermal bootstrap. B

> In tandem

3k Analytical approach (thermal Dispersion Relation).

3 Application to Holographic CFTs.

3K Initiated the Sﬂ1 X S4=1 geometry for Holographic CFTs.
[2510.20894 Barrat, Bozkurt, Marchetto, Miscioscia, EP]

3 Temporal line defects (Polyakov loops).

[2407.14600 Barrat, Fiol, Marchetto, Miscioscia, EP]
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Where are we going?

Xk V=4 SYM & ABJM using the spectrum from integrability.
3 Apply both approaches to Polyakov loops.
%k Study the S x S4=! geometry.

3k Black holes, hydro and CFT data.

3k Going away from criticality.
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Thank you!



