Chiral Composite Linear Dilaton:

2d YM, Symmetric Product Orbifold, and Generalized Veneziano

Shota Komatsu

Based on 2506.21663, 2511.16280, and 2512.xxxxx with Pronobesh Maity (EPFL)

Chiral Composite Linear Dilaton

 We propose a novel string worldsheet theory "Chiral Composite Linear Dilaton"

$$S_{\text{CLD}} = \int \frac{d^2z}{2\pi} \left[\beta \bar{\partial} \gamma + \bar{\beta} \partial \bar{\gamma} + q \left(\partial \varphi \bar{\partial} \varphi + \frac{\hat{R}}{2} \varphi \right) \right]$$

- β : (1,0) form, Lagrange multiplier.
- γ : (0,0) form, a complex target-space coordinate.
- $\varphi = \log(\partial \gamma \bar{\partial} \bar{\gamma})$. A composite linear dilaton.
- Highly non-linear action, but computable.
- Integrating out $\beta \Rightarrow \bar{\partial} \gamma = 0$: localization to holomorphic maps.
- Central charge $c_{\text{CLD}} = 2 + 24q$.

Chiral Composite Linear Dilaton

 We propose a novel string worldsheet theory "Chiral Composite Linear Dilaton"

$$S_{\text{CLD}} = \int \frac{d^2z}{2\pi} \left[\beta \bar{\partial} \gamma + \bar{\beta} \partial \bar{\gamma} + q \left(\partial \varphi \bar{\partial} \varphi + \frac{\hat{R}}{2} \varphi \right) \right]$$

- β : (1,0) form, Lagrange multiplier.
- γ : (0,0) form, a complex target-space coordinate.
- $\varphi = \log(\partial \gamma \bar{\partial} \bar{\gamma})$. A composite linear dilaton.
- Highly non-linear action, but computable.
- Integrating out $\beta \Rightarrow \bar{\partial} \gamma = 0$: localization to holomorphic maps.
- Central charge $c_{\text{CLD}} = 2 + 24q$.
- Worldsheet descriptions of
 - Chiral 2d YM.
 - Symmetric product orbifold of arbitrary seed CFT with c < 24.
 - Generalized Veneziano amplitude.

Plan

- 1. Introduction and Motivation
- 2. Action, Stress tensor and OPE
- 3. Torus partition function
- 4. Amplitudes
- 5. Conclusion

Plan

- 1. Introduction and Motivation
- 2. Action, Stress tensor and OPE
- 3. Torus partition function
- 4. Amplitudes
- 5. Conclusion

Motivation 1: gauge/string duality

 AdS/CFT and gauge/string duality have been and still are a rich source of inspiration and progress.

Strongly coupled phenomena in QFT ↔ Semiclassical gravity / string
Concrete computation in QFT ↔ Conceptual questions / conjectures in QG

 But for further progress & generalization, it is important to understand the inner working of known correspondences.

String dual of confining gauge theory?

Holography for cosmological spacetime / closed universe?

Motivation 1: gauge/string duality

 AdS/CFT and gauge/string duality have been and still are a rich source of inspiration and progress.

Strongly coupled phenomena in QFT ↔ Semiclassical gravity / string
Concrete computation in QFT ↔ Conceptual questions / conjectures in QG

 But for further progress & generalization, it is important to understand the inner working of known correspondences.

String dual of confining gauge theory?

Holography for cosmological spacetime / closed universe?

- One strategy: Focus on cases in which QFT is simple.
 - Symmetric product orbifold of $T^4 \leftrightarrow$ String on $AdS_3 \times S^3$ with k=1
 - Free $\mathcal{N}=4$ SYM \leftrightarrow String in (ambi-)twistor space?
 - Twisted holography

Gopakumar, Witten, Berkovits, Gaberdiel, Gopakumar

Costello, Gaiotto, Paquette,

- Still, \exists many other simple large N QFTs with no known duals.
 - Symmetric product orbifold of other seed CFTs?
 - 2d YM (the simplest confining gauge theory)

Motivation 2: generalized Veneziano

Dual resonance amplitudes: precursor of string theory

$$A(s,t) = \frac{\Gamma(-s)\Gamma(-t)}{\Gamma(-s-t)}$$

$$A(s,t,u) = \frac{\Gamma(-s)\Gamma(-t)\Gamma(-u)}{\Gamma(1+s)\Gamma(1+t)\Gamma(1+u)}$$

Veneziano amplitude

Virasoro-Shapiro amplitude

- Remarkable properties
 - Linear Regge trajectories, infinite resonances.
 - Resonances in different channels in a single mathematical expression.
 - Unitary below $d \leq 10$.
 - Consistent weakly interacting amplitudes of higher spin particles.
- Revival of interest
 - Uniqueness: How unique are they?
 Cheng, Remmen, Arkani-Hamed, Figueiredo, Sciotti, Tarquini...
 - Search for large N QCD amplitudes: Are there deformations that describe meson amplitudes of large N QCD?
 - S-matrix bootstrap

Albert, Knopp, Henriksson, Rastelli, Vichi, Jepsen, Haring, Zhiboedov, Berman, Elvang, Geiser, Lin, Eckner, Figueroa, Tourkine,...

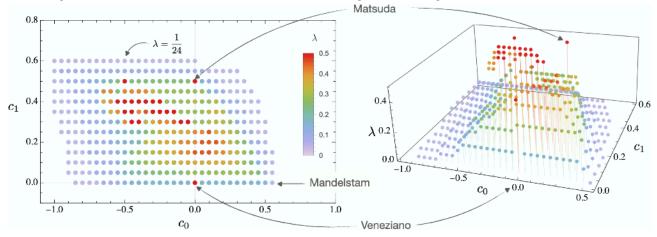
∃ many generalizations of 4-pt amplitudes.

Motivation 2: generalized Veneziano

A class of generalized Veneziano amplitudes Mandelstam

$$A(s,t) = \frac{\Gamma(-s)\Gamma(-t)}{\Gamma(-s-t)} {}_3F_2\left(-s,-t,-\delta;-\frac{s+t}{2},\frac{1-s-t}{2};\lambda\right)$$

• Unitarity in D=4 was recently analyzed in Haring, Zhiboedov



· No worldsheet description, no higher-point generalization known.

CLD as a common answer

- \exists many other simple large N QFTs with no known duals.
 - Symmetric product orbifold of other seed CFTs?
 - 2d YM (the simplest confining gauge theory)

Worldsheet description of generalized Veneziano amplitudes?

CLD as a common answer

- \exists many other simple large N QFTs with no known duals.
 - Symmetric product orbifold of other seed CFTs?
 - 2d YM (the simplest confining gauge theory)

Worldsheet description of generalized Veneziano amplitudes?

Chiral Composite Linear Dilaton is an answer to both questions.

- 1. Introduction and Motivation
- 2. Action, Stress tensor and OPE
- 3. Torus partition function
- 4. Amplitudes
- 5. Conclusion

Action and stress tensor

$$S_{\text{CLD}} = \int \frac{d^2z}{2\pi} \left[\beta \bar{\partial} \gamma + \bar{\beta} \partial \bar{\gamma} + q \left(\partial \varphi \bar{\partial} \varphi + \frac{\hat{R}}{2} \varphi \right) \right]$$

$$\varphi = \log(\partial \gamma \bar{\partial} \bar{\gamma})$$

Linear in eta . Highly non-linear in γ .

• $\gamma\gamma$ and $\beta\gamma$ OPE is unaffected by nonlinearity:

$$\gamma(z)\gamma(w) \sim \text{regular}$$

$$\gamma(z)\gamma(w) \sim \text{regular}$$
 $\beta(z)\gamma(w) \sim -\frac{1}{z-w}$

• $\beta\beta$ OPE is non-linear and non-standard:

$$\beta(z)\beta(w) \sim 2q\partial_z\partial_w \left[\frac{1}{(z-w)^2}\frac{1}{\partial_z\gamma(z)\partial_w\gamma(w)}\right] \quad \text{Derived from path integral (later)}$$

Stress tensor can be derived from $\delta/\delta g_{ab}$:

$$T(z) = -eta \partial \gamma + 2q\{\gamma, z\}$$
 $\{f, z\} = \frac{\partial^3 f}{\partial f} - \frac{3}{2} \left(\frac{\partial^2 f}{\partial f}\right)^2$

Stress tensor OPE

$$T(z) = -\beta \partial \gamma + 2q\{\gamma, z\}$$

$$\gamma(z)\gamma(w) \sim \text{regular}$$
 $\beta(z)\gamma(w) \sim -\frac{1}{z-w}$ $\beta(z)\beta(w) \sim 2q\partial_z\partial_w \left[\frac{1}{(z-w)^2}\frac{1}{\partial_z\gamma(z)\partial_w\gamma(w)}\right]$

• Using OPEs, stress tensor OPEs can be computed (simplification: stress tensor is linear in β)

$$T(z)T(w) \sim \frac{1+12q}{(z-w)^4} + \frac{2T(w)}{(z-w)^2} + \frac{\partial_w T(w)}{z-w}$$

Consistent with conformal symmetry. Central charge c = 2 + 24q

To derive it, one sometimes needs to deal with

$$\beta(z)\log\partial\gamma(w)\sim -\frac{1}{(z-w)^2}\frac{1}{\partial\gamma(w)} \qquad \qquad \text{Can be derived from "replica trick"} \\ \beta(z)(\partial\gamma(w))^n=-\frac{n}{(z-w)^2}(\partial\gamma)^{n-1}$$

• It is also easy to check that γ is (0,0) and β is (1,0) operators.

Plan

- 1. Introduction and Motivation
- 2. Action, Stress tensor and OPE
- 3. Torus partition function
- 4. Amplitudes
- 5. Conclusion

Dual to Symmetric Product Orbifold

• We propose that string dual to symmetric product orbifold of seed CFT $S_{
m seed}$ is given by

$$S = S_{\text{CLD}} + S_{\text{seed}}$$

$$S_{\text{CLD}} = \int \frac{d^2 z}{2\pi} \left[\beta \bar{\partial} \gamma + \bar{\beta} \partial \bar{\gamma} + q \left(\partial \varphi \bar{\partial} \varphi + \frac{\hat{R}}{2} \varphi \right) \right]$$
$$q = 1 - \frac{c_{\text{seed}}}{24}$$

Evidence: torus partition function (torus target space)

$$\gamma \sim \gamma + 2\pi R \sim \gamma + 2\pi R \zeta$$

- Integrating out β gives localization to $\bar{\partial}\gamma=0$ (holomorphic map).
- In addition, any maps with "branch point" $\partial \gamma(z^*) = 0$ is suppressed since $\partial \gamma(z^*) = 0 \quad \rightarrow \quad \varphi = \log(\partial \gamma \bar{\partial} \bar{\gamma}) = -\infty \quad \rightarrow \quad e^{-S_{\rm CLD}} = 0$.
- Such maps exist only when the worldsheet is also torus (genus 1)

$$\frac{\gamma}{R} = \frac{(M - \bar{\tau}W)z + (\tau W - M)\bar{z}}{\tau - \bar{\tau}} \qquad M = m^1 + \zeta m^2 \\ W = w^1 + \zeta w^2 \qquad \tau = \frac{M}{W}$$

Details on partition function

$$\frac{\gamma}{R} = \frac{(M - \bar{\tau}W)z + (\tau W - M)\bar{z}}{\tau - \bar{\tau}} \qquad M = m^1 + \zeta m^2 \\ W = w^1 + \zeta w^2 \qquad \tau = \frac{M}{W}$$

More concretely, the path integral gives

$$\sum_{\{m^a, w^a\}} \frac{\zeta_2}{|W|^2} \int_{\mathcal{F}} \frac{d^2\tau}{\tau_2} \delta^{(2)} \left(\tau - \frac{M}{W}\right) Z_{\text{seed}}(\tau, \bar{\tau})$$

- Localization of the worldsheet moduli & a sum over four integers.
- Extend the integration domain to the upper half plane using two of the four integers and evaluate the delta function:

$$\sum_{a,d=1}^{\infty} \frac{p^{ad}}{ad} \sum_{b=0}^{d-1} Z_{\text{seed}} \left(\frac{b+a\zeta}{d}, \frac{b+a\bar{\zeta}}{d} \right) \qquad p = e^{B\text{Area}/\pi}$$

$$\delta S = -B \int \frac{d^2 z}{4\pi} \left(\partial \gamma \bar{\partial} \bar{\gamma} - \bar{\partial} \gamma \partial \bar{\gamma} \right)$$

 Coincides with the grand canonical free energy of symmetric product orbifold (Hecke operator expression)

Lightening review of chiral 2d YM

2d YM: Simplest possible confining theory.

Linear potential, area law, meson spectrum.....

Completely solvable even at finite N:

$$Z_{\mathcal{M}} = \sum_{\text{rep of U(N)}} \left(\dim R\right)^{2-2G} e^{-g_{\text{YM}}^2 A C_2(R)}$$

At large N, the result factorizes into "chiral" and "anti-chiral" parts

$$Z_{\mathcal{M}} \overset{\mathsf{large N}}{\to} Z_{\mathcal{M}}^{\mathsf{chiral}} Z_{\mathcal{M}}^{\mathsf{anti}}$$

 At finite N, each partition function receives corrections. In addition there will be interactions between chiral and anti-chiral parts.

$$Z_{\mathcal{M}}^{\text{chiral}} = Z_0^{\text{chiral}} + \frac{Z_1^{\text{chiral}}}{N^2} + \cdots$$

$$Z_{\mathcal{M}} = Z_{\mathcal{M}}^{\text{chiral}} Z_{\mathcal{M}}^{\text{anti}} + \frac{Z_{\text{int}}}{N^2} + \cdots$$

2d YM as string theory

- Gross Taylor: 1/N expansion can be interpreted as string genus expansion.
- Chiral and anti-chiral parts correspond to worldsheets wrapping the target space with different orientations.
- But the explicit worldsheet action was not written down.

2d YM as string theory

- Gross Taylor: 1/N expansion can be interpreted as string genus expansion.
- Chiral and anti-chiral parts correspond to worldsheets wrapping the target space with different orientations.
- But the explicit worldsheet action was not written down.
- Horava: Proposed a "rigid topological string". Much more complicated than standard string theory.
- Cordes, Moore, Rangoolam: "zero area limit" of 2d YM can be interpreted as topological string.
- Vafa: topological string dual to 2d YM on a torus.
- Aganagic, Ooguri, Saulina, Vafa: Partition functions on Riemann surfaces coincide with q-deformed topological string partition function.

Our string dual

$$S = S_{\text{CLD}}|_{q=1} + \int \frac{d^2z}{4} (\partial \gamma \bar{\partial} \bar{\gamma} - \bar{\partial} \gamma \partial \bar{\gamma})$$

- Symmetric product orbifold of "nothing"
- Torus world sheet to torus target space path integral can be evaluated in a similar manner:

$$\sum_{K=1}^{\infty} \frac{e^{-K\lambda A/2}}{2K} \sum_{\substack{ad=K\\a,d\in\mathbb{Z}_{+}}} (a+d)$$

 Coincides with the large N free energy of chiral 2d YM by Gross and Taylor.

A technical but important remark

- At this order (genus 1), the symmetric product orbifold and 2d YM are similar.
- But at subleading order of g_s , there is an important difference.
- The answer for the symmetric product orbifold is "genus-1 exact".
 No higher-genus correction. But the chiral 2d YM partition function is known to receive 1/N corrections.
- At first sight, this is a problem for our proposal on chiral 2d YM.

Any maps with "branch point" $\partial \gamma(z^*) = 0$ is suppressed since

$$\partial \gamma(z^*) = 0 \quad \to \quad \varphi = \log(\partial \gamma \bar{\partial} \bar{\gamma}) = -\infty \quad \to \quad e^{-S_{\text{CLD}}} = 0.$$

• Maps at higher order always contain "branch points" $\partial \gamma = 0$

Renormalization of g_s

$$\partial \gamma(z^*) = 0 \quad \rightarrow \quad \varphi = \log(\partial \gamma \bar{\partial} \bar{\gamma}) = -\infty \quad \rightarrow \quad e^{-S_{\text{CLD}}} = 0.$$

- There is a famous resolution to this known in light cone string field theory.

 Mandelstam, Baba, Ishibashi, Murakami,...
- The key point is that # of "branch points" ($\partial \gamma = 0$) is equal to Euler characteristics (n+ 2g -2).
- Thus one can absorb the divergence of φ into a renormalization of g_s :

$$g_s \times \text{``0''} = g_s^{\text{ren}}$$

• In 2d YM (and generalized Veneziano), we always perform this renormalization while, for symmetric product orbifold, we do not.

Comment 1: Non-relativistic string

Gomis, Ooguri,,..., Bergshoff, Gomis, Yan,....

$$\int d^2z \left(\beta \bar{\partial}X + \bar{\beta}\partial\bar{X}\right) + (\text{Polyakov action for transverse modes})$$

Worldsheet theory is relativistic, target space spectrum is non-relativistic.

• It can be obtained by a double-scaling limit of usual string theory in which one sends B-field large (critical) and $\alpha' \to 0$. (Open string sector becomes noncommutative gauge theory)

Roughly speaking, the non-relativistic limit kills half of the spectrum.

Here taking the limit makes the theory chiral and kill "anti-strings" which
do not exist in the symmetric product orbifolds.

Comment 2: Tensionless AdS3/CFT2

Eberhardt, Gaberdiel, Gopakumar

Free field representation of SL(2,R) WZW:

$$\int d^2z \left(\beta \bar{\partial}X + \bar{\beta}\partial\bar{X} + 4\underline{\partial}\Phi \bar{\partial}\Phi - e^{-2\Phi}\beta\bar{\beta} - R\Phi\right)$$

- Similar to our action, but Φ is not composite.
- They argued that, for tensionless string (k=1), the path integral localizes to

$$\Phi = -\log \epsilon + \log \partial X \bar{\partial} \bar{X}$$

- After the replacement, the action has the same structure as ours.
- The relation is not rigorous: their theory is supersymmetric, our theory is purely boson.

Plan

- 1. Introduction and Motivation
- 2. Action, Stress tensor and OPE
- 3. Torus partition function
- 4. Amplitudes (Generalized Veneziano)
- 5. Conclusion

Worldsheet action

$$S = S_{\mathbb{R}^{d-1,1}} + S_{\beta\gamma} + S_{\chi} + S_{bc}$$

Standard Polyakov action in d dimensions

$$S_{\mathbb{R}^{d-1,1}} = \int_{\Sigma} \frac{d^2 z}{2\pi\alpha'} \partial X^{\mu} \bar{\partial} X_{\mu}$$

Worldsheet action

$$S = S_{\mathbb{R}^{d-1,1}} + S_{\beta\gamma} + S_{\chi} + S_{bc}$$

Worldsheet action

$$S = S_{\mathbb{R}^{d-1,1}} + S_{\beta\gamma} + S_{\chi} + S_{bc}$$

Arbitrary "internal" CFT with central charge c_{γ}

Worldsheet action

$$S = S_{\mathbb{R}^{d-1,1}} + S_{eta\gamma} + S_{\chi} + S_{bc}$$

Worldsheet action

$$S = S_{\mathbb{R}^{d-1,1}} + S_{\beta\gamma} + S_{\chi} + S_{bc}$$

"Open" Chiral Composite Linear Dilaton (CLD) SK, Maity 2506.21663

$$S_{\beta\gamma} = \int_{\Sigma} \frac{d^2z}{2\pi} \left[\beta \bar{\partial}\gamma + \bar{\beta}\partial\bar{\gamma} + q \left(\partial\varphi \bar{\partial}\varphi + \frac{\hat{R}}{2}\varphi \right) \right] + \frac{q}{\pi} \int_{\partial\Sigma} ds \,\hat{k}\varphi$$

$$\varphi = \log(\partial \gamma \bar{\partial} \bar{\gamma})$$

open string boundary term

Worldsheet action

$$S = S_{\mathbb{R}^{d-1,1}} + S_{\beta\gamma} + S_{\chi} + S_{bc}$$

Most important part "Chiral Composite Linear Dilaton"

"Open" Chiral Composite Linear Dilaton (CLD) SK, Maity 2506.21663

$$S_{\beta\gamma} = \int_{\Sigma} \frac{d^2z}{2\pi} \left[\beta \bar{\partial}\gamma + \bar{\beta}\partial\bar{\gamma} + q \left(\partial\varphi \bar{\partial}\varphi + \frac{\hat{R}}{2}\varphi \right) \right] + \frac{q}{\pi} \int_{\partial\Sigma} ds \,\hat{k}\varphi$$

$$\varphi = \log(\partial \gamma \bar{\partial} \bar{\gamma})$$

open string boundary term

- \hat{R} and \hat{k} are worldsheet Ricci curvature and geodesic curvature.
- Central charge $c_{\beta\gamma}=2+24q$. Conformal anomaly cancels when $q=1-\frac{a+c_{\chi}}{24}$

Set up

$$S_{\beta\gamma} = \int_{\Sigma} \frac{d^2z}{2\pi} \left[\beta \bar{\partial}\gamma + \bar{\beta}\partial\bar{\gamma} + q \left(\partial\varphi \bar{\partial}\varphi + \frac{\hat{R}}{2}\varphi \right) \right] + \frac{q}{\pi} \int_{\partial\Sigma} ds \,\hat{k}\varphi \qquad \qquad \varphi = \log(\partial\gamma \bar{\partial}\bar{\gamma})$$

• Consider open strings stretched between "D0-branes" in γ -plane



Boundary conditions

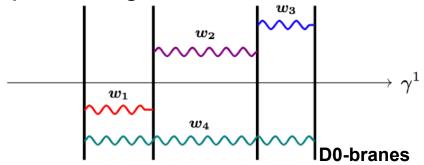
$$\delta \gamma^1 \propto \delta(\gamma + \bar{\gamma}) = 0$$
 $\partial_n \gamma^2 \propto \partial_n (\gamma - \bar{\gamma}) = 0$
Dirichlet Neumann

$$\beta + \bar{\beta} = 0$$
 From EOM

Set up

$$S_{\beta\gamma} = \int_{\Sigma} \frac{d^2z}{2\pi} \left[\beta \bar{\partial}\gamma + \bar{\beta}\partial\bar{\gamma} + q \left(\partial\varphi \bar{\partial}\varphi + \frac{\hat{R}}{2}\varphi \right) \right] + \frac{q}{\pi} \int_{\partial\Sigma} ds \,\hat{k}\varphi \qquad \qquad \varphi = \log(\partial\gamma \bar{\partial}\bar{\gamma})$$

• Consider open strings stretched between "D0-branes" in γ -plane



Boundary conditions

$$\delta\gamma^1 \propto \delta(\gamma+\bar{\gamma}) = 0 \qquad \qquad \partial_n\gamma^2 \propto \partial_n(\gamma-\bar{\gamma}) = 0 \qquad \qquad \beta+\bar{\beta} = 0$$
 Dirichlet Neumann From EOM

Vertex operators

$$e^{ikX}e^{iwR}\int\beta-\bar{\beta} \qquad \qquad (h,\bar{h})=\left(\alpha'k^2+q,\alpha'k^2+q\right) \qquad \qquad \text{On-shell condition:} \quad \alpha'k^2=1-q$$

• For general q, strings are not massless.

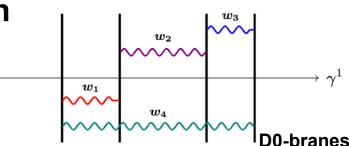


• Integrate out β 's in the presence of vertex operators

$$S_{\beta\gamma} = \int_{\Sigma} \frac{d^2z}{2\pi} \left[\beta \bar{\partial}\gamma + \bar{\beta}\partial\bar{\gamma} + q \left(\partial\varphi \bar{\partial}\varphi + \frac{\hat{R}}{2}\varphi \right) \right] + \frac{q}{\pi} \int_{\partial\Sigma} ds \, \hat{k}\varphi \qquad \qquad e^{ikX} e^{iwR} \int \beta - \bar{\beta}$$

Worldsheet localizes to "Mandelstam map"

$$\gamma(z) = \rho(z) = -i\sum_{k} w_k R \log(z - z_k)$$



• Integrate out β 's in the presence of vertex operators

$$S_{\beta\gamma} = \int_{\Sigma} \frac{d^2z}{2\pi} \left[\beta \bar{\partial} \gamma + \bar{\beta} \partial \bar{\gamma} + q \left(\partial \varphi \bar{\partial} \varphi + \frac{\hat{R}}{2} \varphi \right) \right] + \frac{q}{\pi} \int_{\partial \Sigma} ds \, \hat{k} \varphi \qquad e^{ikX} e^{iwR} \int \beta - \bar{\beta}$$

Worldsheet localizes to "Mandelstam map"

$$\gamma(z) = \rho(z) = -i \sum_{k} w_k R \log(z - z_k)$$

Evaluate the CLD action on Mandelstam map

$$e^{-S_{\text{CLD}}[\rho]} = \frac{|w_1w_2w_3w_4|^{q/2}|w_1+w_3|^q}{|z_{12}z_{14}z_{23}z_{24}|^q} \cdot |z_c-a_+|^{q/2}|z_c-a_-|^{q/2}$$
 Mandelstam, Baba, Ishibashi, Murakami
$$|z_c-a_+|^{q/2}|z_c-a_-|^$$

• $z_c = \frac{z_{12}z_{34}}{z_{13}z_{24}}$ is a cross ratio.

•
$$a_{\pm} = \frac{1}{2} \pm \frac{i}{2} \sqrt{\frac{w_2}{w_1} \left(2 + \frac{w_2}{w_1}\right)}$$
 are related to "interaction points" (their discriminant): $\partial \rho = 0$

• Combining it with Koba-Nielsen factor from S_X gives

$$\int_0^1 dx \, x^{-\alpha' s + q - 2} \, (1 - x)^{-\alpha' t + q - 2} \, [(x - a_+)(x - a_-)]^{q/2}$$

Basically of the same form as the Mandelstam amplitude:

$$A(s,t) = \frac{\Gamma(-s)\Gamma(-t)}{\Gamma(-s-t)} {}_3F_2\left(-s,-t,-\delta;-\frac{s+t}{2},\frac{1-s-t}{2};\lambda\right)$$

$$A(s,t) = \int_0^1 dz \, z^{-s-b-1} (1-z)^{-t-b-1} \, (1-4\lambda z(1-z))^{\delta}$$

• Combining it with Koba-Nielsen factor from S_X gives

$$\int_0^1 dx \, x^{-\alpha' s + q - 2} \, (1 - x)^{-\alpha' t + q - 2} \, [(x - a_+)(x - a_-)]^{q/2}$$

Basically of the same form as the Mandelstam amplitude:

$$A(s,t) = \int_0^1 dz \, z^{-s-b-1} (1-z)^{-t-b-1} \, (1-4\lambda z(1-z))^{\delta}$$

- a_{\pm} can be tuned by changing the ratio w_2/w_1 . $(a_{\pm}=\frac{1}{2}\pm\frac{i}{2}\sqrt{\frac{w_2}{w_1}}\left(2+\frac{w_2}{w_1}\right))$ (We already fixed $w_{3,4}$ so that the amplitude becomes s-t symmetric $a_{+}=1-a_{-}$)
- q can also be modified by changing the central charge of internal CFT S_χ .
- An unsatisfactory feature: b is constrained and external states are not massless.
 - → Can be remedied by including free boson in the internal CFT and dressing vertex operators by free boson vertex operators.

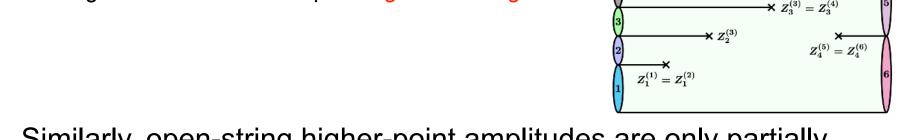
Closed string generalization

Performing a similar computation in closed string leads

$$\mathcal{A}_4^{\text{closed}} = \int_{\mathbb{C}} d^2z \, |z|^{-\frac{\alpha'}{2}s - 2b - 2} |1 - z|^{-\frac{\alpha'}{2}t - 2b - 2} |1 - 4\lambda z(1 - z)|^q$$
2 zeros

- Generalization of KLT trick gives a sum of products of Appel \mathbb{F}_1
- It is only s-t symmetric (not s-t-u symmetric)
- Technical reason: One cannot make it s-t-u symmetric using just 2 zeros.
- Conceptual reason: Conservation of $w's \sum w_i = 0$. Some w's are positive and others

are negative. Mandelstam map is a light cone diagram.



 Similarly, open-string higher-point amplitudes are only partially crossing symmetric. **Summary**

$$S_{\text{CLD}} = \int \frac{d^2z}{2\pi} \left[\beta \bar{\partial} \gamma + \bar{\beta} \partial \bar{\gamma} + q \left(\partial \varphi \bar{\partial} \varphi + \frac{\hat{R}}{2} \varphi \right) \right]$$

- Proposed a novel worldsheet theory that is potentially dual to chiral 2d
 YM, symmetric product orbifold and generalized Veneziano amplitude.
- Non-linear action, OPE contains inverse fields. Nevertheless the path integral can be performed explicitly.
- Understand the connection to topological string for chiral 2d YM on a torus by Vafa

Speculation: topological string contains fermionic modes on the world sheet. Integrating them out would lead to CLD?

If so, we will have a better formulation also for dual of symmetric product orbifold and world sheet description of generalized Veneziano.

- More evidence for the duality with symmetric product orbifold.
- Other generalized Veneziano amplitudes?
- Crossing symmetric generalized Virasoro-Shapiro?
- "Derivation" of duality for symmetric product orbifold. Lunin, Mathur